Chemistry - The rate and extent of chemical change -Checklist

4.6.1 Rate of reaction	N1 ¢ ¢		
Use graphical data to explain each part of the graph ie: - initially rate is fast - slows down - reaction completes. Extended writing: write instructions to another student how to calculate the mean rate of reaction. Explain what is meant by the units: - g / s - $\mathrm{cm}^{3} / \mathrm{s}$ - mol/s.			
Extended writing: explain the effect on the rate of reaction of the following factors: - concentration - pressure - surface area - temperature - catalyst. Use graphs of data obtained from concentration reactions to explain what occurs as the reaction proceeds.			
Describe collision theory. Use collision theory to explain the change in rate of reaction in terms of particle behaviour for: - concentration - pressure - surface area - temperature - catalyst.			
Define the term activation energy. Identify advantages of using catalysts in industrial reactions eg reducing costs. Explain the effect of using a catalyst on the activation energy.			

4.6.2 Reversible reactions and dynamic equilibrium

Explain what is meant by a reversible reaction.
Explain the difference between:
$\rightleftharpoons \quad$ and \rightarrow reactions.
Recall definition of:

- exothermic
- endothermic.

Describe the effects of temperature on the reversible reaction.
Explain the term equilibrium and given suitable examples of when it can occur.
Describe Le Chatelier's principle.
Explain the effects on equilibrium of changing conditions using suitable examples.
Research the work of Le Chatelier or the life of Fritz Haber. Highlight the moral ambiguity of Haber's work.
Use data to predict the effect of concentration on equilibrium. Justify answers.
Use data to predict the effect of temperature on equilibrium. Justify answers.
Use data to predict the effect of pressure on equilibrium. Justify answers.

