

AQA Physics - 7407/7408

Module 11: Engineering Physics

You should be able to demonstrate and show your understanding of:	1	_	ess and tandin	
	1	2	3	4
11.1 Rotational Dynamics				
11.1.1 Concept of Moment of Inertia				
$I = mr^2$ for a point mass				
$I = \Sigma mr^2$ for an extended object				
Qualitative knowledge of the factors that affect the moment of inertia of a rotating object.				
Expressions for moment of inertia will be given where necessary.				
11.1.2 Rotational Kinetic Energy				
$E_k = \frac{1}{2} I \omega^2$				
Use of flywheels in machines and factors affecting the energy storage capacity of a flywheel.				
Use of flywheels for smoothing torque and speed, and for storing energy in vehicles, and in machines used for production processes.				
11.1.3 Rotational Motion	'	-		
Angular displacement, angular speed, angular velocity, angular acceleration:				
$\omega = \Delta\theta / \Delta t$				
$\alpha = \Delta \omega / \Delta t$				
Representation by graphical methods of uniform and non-uniform angular acceleration.				

You should be able to demonstrate and show your understanding of:	ı	Progress and understanding:				
	1	2	3	4		
Equations for uniform angular acceleration:						
$\omega_2 = \omega_1 + \alpha t$						
$\theta = \frac{1}{2} (\omega_1 + \omega_2) t$						
$\theta = \omega_1 t + \frac{1}{2} \alpha t^2$						
$\omega_2^2 = \omega_1^2 + 2\alpha\theta$						
Students should be aware of the analogy between rotational and translational dynamics.						
11.1.4 Torque and Angular Acceleration						
T = Fr						
$T = I\alpha$						
11.1.5 Angular Momentum						
Angular momentum = $I\omega$						
Conservation of angular momentum.						
Angular impulse = change in angular momentum						
$T \Delta t = \Delta(I\omega)$ where T is constant.						
Applications may include examples from sport.						
11.1.6 Work and Power						
$W = T\theta$						
$P = T\omega$						
Awareness that frictional torque has to be taken into account in rotating machinery.						

You should be able to demonstrate and show your understanding of:	I		Progress and understanding	
		2	3	4
11.2 Thermodynamics and Engines				
11.2.1 First Law of Thermodynamics				
Quantitative treatment of first law of thermodynamics:				
$Q = \Delta U + W$				
Where Q is energy transferred to the system by heating, ΔU is increase in internal energy and W is work done by the system.				
Applications of first law of thermodynamics.				
11.2.2 Non-flow Processes				
Isothermal, adiabatic, constant pressure and constant volume changes.				
pV = nRT				
Adiabatic change:				
pV' = constant				
Isothermal change:				
pV = constant				
At constant pressure $W = p\Delta V$				
Application of first law of thermodynamics to the above processes.				
11.2.3 The p-V Diagram				
Representation of processes on $p-V$ diagram.				
Estimation of work done in terms of area below the graph.				
Extension to cyclic processes: work done per cycle = area of loop				
Expressions for work done are not required except for the constant pressure case, $W = p\Delta V$				
11.2.4 Engine Cycles				
Understanding of a four-stroke petrol engine cycle and a diesel engine cycle, and of the corresponding indicator diagrams.				

You should be able to demonstrate and show your understanding of:	Progress and understanding:				
	1	2	3	_	
Comparison with the theoretical diagrams for these cycles; use of indicator diagrams for predicting and measuring power and efficiency.					
Input power = calorific value × fuel flow rate					
Indicated power as					
(area of p - V loop) \times (no. of cycles per second) \times (no. of cylinders)					
Output or brake power, $P = T\omega$					
Friction power = indicated power – brake power					
Engine efficiency; overall, thermal and mechanical efficiencies.					
Overall efficiency = brake power / input power					
Thermal efficiency = indicated power / input power					
Mechanical efficiency = brake power / indicated power					
A knowledge of engine constructional details is not required.	'			'	
Questions may be set on other cycles, but they will be interpretative and all educations.	ssentia	al infor	mation	ı wi	
11.2.5 Second Law and Engines					
Impossibility of an engine working only by the First Law.					
Second Law of Thermodynamics expressed as the need for a heat engine to operate between a source and a sink.					
Efficiency = $W/Q_h = (Q_h - Q_c)/Q_h$					
Maximum theoretical efficiency = $(T_h - T_c) / T_h$					
source at T _H					
Q _H					

sink at $T_{\rm C}$

You should be able to demonstrate and show your understanding of:	Progress and understanding:			
	1	2	3	4
Reasons for the lower efficiencies of practical engines.				
Maximising use of W and Q_H for example in combined heat and power schemes.				
11.2.6 Reversed Heat Engines			'	
Basic principles and uses of heat pumps and refrigerators.				
A knowledge of practical heat pumps or refrigerator cycles and devices is not	require	ed.		
hot space at T_H Q_H Q_C Q_C cold space at T_C				
Coefficients of performance:				
refrigerator: $COP_{ref} = Q_c / W = Q_c / (Q_h - Q_c) = T_c / (T_h - T_c)$				
heat pump: $COP_{hp} = Q_h / W = Q_h / (Q_h - Q_c) = T_h / (T_h - T_c)$				