Year 2/A PURE PLC
Name: \qquad

1) ALGEBRAIC METHODS

I am able to.....

	\because	\because
Use proof by contradication to prove true statements		
Multiply and divide two or more algebraic fractions		
Add or subtract two or more algebraic fractions		
Convert an expression with linear factors in the denominator into partial fractions		
Convert an expression with repeated linear factors in the denominator into partial fractions		
Divide algebraic fractions		
Convert an improper fraction into partial fraction form		

2) Functions

I am able to.....

	\because	\because
Understand and use the modulus function		
Understand mappings and functions, and use domain and range		
Combine two or more functions to make a composite function		
know how to find the inverse of a function graphically and algebraically		
Sketch the graphs of the modulus functions y=If(x)I and y=f(IxI)		
Apply combination of two (or more) transformations to the same curve		
Transform the modulus function		

3) SEQUENCES AND SERIES

I am able to.....

	\because	\because
Find the nth term of an arithmetic sequence		
Prove and use the formula for the sum of the first n terms of an arithmetic series		
Find the nth term of a geometric series		
Prove and use the formula for the sum to infinity of a convergent geometric series		
Use sigma notation to describe series		
Generate sequences from recurrence relations		
Model real-life situations with sequences and series		

4) BINOMIAL EXPANSION

I am able to.....

	\because	\because
Expand $(1+\mathrm{x})^{\wedge} \mathrm{n}$ for any rational constant n	\ddots	
Determine the range of values for x for which an expansion is valid		
Expand $(\mathrm{a}+\mathrm{bx})^{\wedge} \mathrm{n}$ for any rational constant n		
Use partial fractions to expand fractional expressions		

5) RADIANS

I am able to.....

	\because	\because	\because
Convert between degrees and radians			
Apply radians to trig graphs and their transformations			
Know exact values of angles measured in radians			
Find areas of ectors and segments using radians			
Solve trig equations in radians			
Use approximate trig values when theta is small			

6) TRIGONOMETRIC FUNCTIONS

I am able to.....

	\ddots	\because
Understand the definitions of secant, cosecant and cotangent and their relationship to cosine, sine and tangent.		
Understand the graphs of secant, cosecant and cotangent and their domain and range.		
Simplify expressions, prove simple identities and solve equations involving secant, cosecant and cotangent.		
Prove and use sec^2x and cosec^2x identitiy.		
Understand and use inverse trig functions and their domain and ranges.		

7) TRIGONOMETRY AND MODELLING

I am able to.....

	\because	\because
Prove and use the Addition Formulae		
Understand and use the double angle formulae		
Solve Trigonometric Equations using the double angle and addition formulae		
Write expression of the form acosx +- bsinx in the forms Rcos(x+-a) or Rsin(x+-a)		
Prove trigonometric identities using a variety of identities		
Use trigonometric functions to model real life situations.		

8) PARAMETRIC EQUATIONS

I am able to.....
$\left.\begin{array}{|l|l|l|l|}\hline & \because & \because & (\cdot) \\ \hline \text { Convert Parametric Equations to Cartesian Equations using substitution } & & & \\ \hline \text { Convert parametric Rquations to Cartesian Equations using trig identitites }\end{array}\right)$

9) DIFFERENTIATION

I am able to.....

	\because	\because
Differentiate trigonometric functions.		
Differentiate exponentials and logarithms.		
Differentiate functions using the chain, product and quotient rules.		
Differentiate parametric equations.		
Differentiate functions which are defined implicitly.		
Use the second derivative to describe the behaviour of a function.		
Solve problems involving connected rates of change and construct simple differential equations.		

10) NUMERICAL METHODS

I am able to.....

	\because	\because
Locate roots of $\mathrm{f}(\mathrm{x})=0$ by considering changes of sign		
Use iteration to find an approximation to the root of the equation $\mathrm{f}(\mathrm{x})=0$		
Use the Newton-Raphson procedure to find approximations to the solutions of equations of the form $\mathrm{f}(\mathrm{x})=0$		
Use numerical methods to solve problems in context		

11) INTEGRATION

I am able to.....

	\because	\because
Integrate standard mathematical functions including trigonometric and exponential functions and use the reverse of the chain rule to integrate functions of the form f(ax+b)		
Use trigonometric identities in integration		
Use the reverse of the chain rule to integrate more complex functions		
Integrate functions by making a substitution, using integration by parts and using partial fractions		
Use integration to find the area under curve		
Use the trapezium rule to approximate the area under the curve differential equations		

11) VECTORS

I am able to.....

	\because	\because
Understand 3D Cartesian coordinates		
Use Vectors in three dimensions		
Use vectors to solve geometric problems		
Model 3D motion in mechanics with vectors		

