Topic Area	Ref	You need to know how to:	\bigcirc	\bigcirc	\because	Revised?	Practised?
	1.1.1	Define imaginary and complex numbers					
		Add and subtract complex numbers					
	1.1.2	Multiply complex numbers					
	1.1.3	Understand the term complex conjugate					
	1.1.3	Divide complex numbers					
	1.1.4	Solve quadratics with complex roots					
	1.1.5	Solve cubics or quartics with complex roots					
	2.1.1	Express a number in exponential form					
	2.1.2	Multiply and divide complex numbers in exponential form					
	2.1.3	Understand de Moivre's theorm					
	2.1.4	Use de Moivre's theorem to derive trig identities					
	2.1.5	Use de Moivre's theorem to evaluate series					
		Understand how to find nth roots of unity					
		Solve equations in the form $z^{n}-\mathrm{a}-\mathrm{ib}=0$					
	2.1.7	Use roots of unity to solve geometric tasks					
	1.2.1	Use an Argand diagram for a complex number					
	1.2.2	Find the modulus and argument of a complex number					
$\begin{aligned} & \underline{0}-0 \\ & \hline \underline{0} \end{aligned}$	1.2.3	Write a complex number in mod-arg form					
	1.2.4	Represent loci on an Argand diagram					
	1.2.5	Represent regions on an Argand diagram					
	1	Understand sigma notation					
		Use standard results for linear series					
		Use standard results for quadratic \& cubic series					
-	1.3.2	Evaluate and simplify series linear, quadratic or cubic sequence functions					
\sim	2.2.1	Use the method of differences					
	2.2.2	Find higher derivatives of functions					
	2.2.3	Express series using Maclaurin's expansion					
	2.2.4	Expand series of compound functions					

	1.4 .1	Derive and use the roots of a quadratic equation					

		Recall the steps to perform proof by induction				

		Understand polar coordinates					

