
A-level Chemistry

3.3 Organic Chemistry (Y13)

Name

Lesson Date(s)	Торіс	Learning Outcomes From Specification	Key Words & Equations	Notes (Revision tips, exam technique tips, priorities for revision etc.)
	3.3.7 Optical Isomerism	Optical isomerism is a form of stereoisomerism and occurs as a result of chirality in molecules, limited to molecules with a single chiral centre. An asymmetric carbon atom is chiral and gives rise to optical isomers (enantiomers), which exist as non superimposable mirror images and differ in their effect on plane polarised light. A mixture of equal amounts of enantiomers is called a racemic mixture (racemate). Students should be able to: draw the structural formulas and displayed formulas of enantiomers understand how racemic mixtures (racemates) are formed and why they are optically inactive.		

Lesson Date(s)	Торіс	Learning Outcomes From Specification	Key Words & Equations	Notes (Revision tips, exam technique tips, priorities for revision etc.)
	3.3.8 Aldehydes & Ketones	Aldehydes are readily oxidised to carboxylic acids. Chemical tests to distinguish between aldehydes and ketones including Fehling's solution and Tollens' reagent. Aldehydes can be reduced to primary alcohols, and ketones to secondary alcohols, using NaBH4 in aqueous solution. These reduction reactions are examples of nucleophilic addition. The nucleophilic addition reactions of carbonyl compounds with KCN, followed by dilute acid, to produce hydroxynitriles. Aldehydes and unsymmetrical ketones form mixtures of enantiomers when they react with KCN followed by dilute acid. The hazards of using KCN.arrows to represent the movement of electron pairs. Students should be able to: write overall equations for reduction reactions using [H] as the reductant outline the nucleophilic addition mechanism for reduction reactions with NaBH4 (the nucleophile should be shown as H–) write overall equations for the formation of hydroxynitriles using HCN outline the nucleophilic addition mechanism for the		

Lesson Date(s)	Торіс	Learning Outcomes From Specification	Key Words & Equations	Notes (Revision tips, exam technique tips, priorities for revision etc.)
		reaction with KCN followed by dilute acid		
		explain why nucleophilic addition reactions of KCN, followed by dilute acid, can produce a mixture of enantiomers.		
		The structures of carboxylic acids and esters.		
		Carboxylic acids are weak acids but will liberate CO_2 from carbonates.		
		Carboxylic acids and alcohols react, in the presence of an acid catalyst, to give esters.		
		Common uses of esters (eg in solvents, plasticisers, perfumes and food flavourings).		
	3.3.9.1	Vegetable oils and animal fats are esters of propane- 1,2,3-triol (glycerol).		
	Carboxylic Acids & Esters	Esters can be hydrolysed in acid or alkaline conditions to form alcohols and carboxylic acids or salts of carboxylic acids.		
		Vegetable oils and animal fats can be hydrolysed in alkaline conditions to give soap (salts of long-chain carboxylic acids) and glycerol.		
		Biodiesel is a mixture of methyl esters of long-chain carboxylic acids.		
		Biodiesel is produced by reacting vegetable oils with methanol in the presence of a catalyst.		

Lesson Date(s)	Торіс	Learning Outcomes From Specification	Key Words & Equations	Notes (Revision tips, exam technique tips, priorities for revision etc.)
	3.3.9.2 Acylation	The structures of: acid anhydrides acyl chlorides amides. The nucleophilic addition–elimination reactions of water, alcohols, ammonia and primary amines with acyl chlorides and acid anhydrides. The industrial advantages of ethanoic anhydride over ethanoyl chloride in the manufacture of the drug aspirin. Students should be able to outline the mechanism of nucleophilic addition–elimination reactions of acyl chlorides with water, alcohols, ammonia and primary amines		
		Preparation of: a pure organic solid and test of its purity a pure organic liquid		

Lesson Date(s)	Торіс	Learning Outcomes From Specification	Key Words & Equations	Notes (Revision tips, exam technique tips, priorities for revision etc.)
	3.3.10.1 Aromatic Chemistry - Bonding	The nature of the bonding in a benzene ring, limited to planar structure and bond length intermediate between single and double. Delocalisation of p electrons makes benzene more stable than the theoretical molecule cyclohexa-1,3,5- triene. Students should be able to: use thermochemical evidence from enthalpies of hydrogenation to account for this extra stability explain why substitution reactions occur in preference to addition reactions.		
	3.3.10.2 Aromatic Chemistry – Electrophilic Substitution	Electrophilic attack on benzene rings results in substitution, limited to monosubstitutions. Nitration is an important step in synthesis, including the manufacture of explosives and formation of amines. Friedel–Crafts acylation reactions are also important steps in synthesis. Students should be able to outline the electrophilic substitution mechanisms of: nitration, including the generation of the nitronium ion acylation using AlCl ₃ as a catalyst.		

Lesson Date(s)	Торіс	Learning Outcomes From Specification	Key Words & Equations	Notes (Revision tips, exam technique tips, priorities for revision etc.)
	3.3.11.1 Amines - Preparation	Primary aliphatic amines can be prepared by the reaction of ammonia with halogenoalkanes and by the reduction of nitriles. Aromatic amines, prepared by the reduction of nitro compounds, are used in the manufacture of dyes.		
	3.3.11.2 Amines – Base Properties	Amines are weak bases. The difference in base strength between ammonia, primary aliphatic and primary aromatic amines. Students should be able to explain the difference in base strength in terms of the availability of the lone pair of electrons on the N atom.		

Lesson Date(s)	Торіс	Learning Outcomes From Specification	Key Words & Equations	Notes (Revision tips, exam technique tips, priorities for revision etc.)
	3.3.11.3 Amines – Nucleophilic Properties	Amines are nucleophiles. The nucleophilic substitution reactions of ammonia and amines with halogenoalkanes to form primary, secondary, tertiary amines and quaternary ammonium salts. The use of quaternary ammonium salts as cationic surfactants. The nucleophilic addition–elimination reactions of ammonia and primary amines with acyl chlorides and acid anhydrides. Students should be able to outline the mechanisms of: these nucleophilic substitution reactions the nucleophilic addition–elimination reactions of ammonia and primary amines with acyl chlorides.		revision etc.)

Lesson Date(s)	Торіс	Learning Outcomes From Specification	Key Words & Equations	Notes (Revision tips, exam technique tips, priorities for revision etc.)
	3.3.12.1 Condensation Polymers	Condensation polymers are formed by reactions between: dicarboxylic acids and diols dicarboxylic acids and diamines amino acids. The repeating units in polyesters (eg Terylene) and polyamides (eg nylon 6,6 and Kevlar) and the linkages between these repeating units. Typical uses of these polymers. Students should be able to: draw the repeating unit from monomer structure(s) draw the repeating unit from a section of the polymer chain draw the structure(s) of the monomer(s) from a section of the polymer explain the nature of the intermolecular forces between molecules of condensation polymers.		

Lesson Date(s)	Торіс	Learning Outcomes From Specification	Key Words & Equations	Notes (Revision tips, exam technique tips, priorities for revision etc.)
	3.3.12.2 Biodegradabili ty & Disposal of Polymers	Polyalkenes are chemically inert and non- biodegradable. Polyesters and polyamides can be broken down by hydrolysis and are biodegradable. The advantages and disadvantages of different methods of disposal of polymers, including recycling. Students should be able to explain why polyesters and polyamides can be hydrolysed but polyalkenes cannot.		
	3.3.13.1 Amino Acids	Amino acids have both acidic and basic properties, including the formation of zwitterions. Students should be able to draw the structures of amino acids as zwitterions and the ions formed from amino acids: in acid solution in alkaline solution.		

Lesson Date(s) Topic	Learning Outcomes From Specification	Key Words & Equations	Notes (Revision tips, exam technique tips, priorities for revision etc.)
3.3.13.2 Proteins	using developing agents such as ninhydrin or		

Lesson Date(s)	Торіс	Learning Outcomes From Specification	Key Words & Equations	Notes (Revision tips, exam technique tips, priorities for revision etc.)
	3.3.13.3 Enzymes	Enzymes are proteins. The action of enzymes as catalysts, including the concept of a stereospecific active site that binds to a substrate molecule. The principle of a drug acting as an enzyme inhibitor by blocking the active site. Computers can be used to help design such drugs. Students should be able to explain why a stereospecific active site can only bond to one enantiomeric form of a substrate or drug.		

Lesson Date(s)	Торіс	Learning Outcomes From Specification	Key Words & Equations	Notes (Revision tips, exam technique tips, priorities for revision etc.)
	3.3.13.4 DNA	The structures of the phosphate ion, 2-deoxyribose (a pentose sugar) and the four bases adenine, cytosine, guanine and thymine are given in the Chemistry Data Booklet. A nucleotide is made up from a phosphate ion bonded to 2-deoxyribose which is in turn bonded to one of the fourbases adenine, cytosine, guanine and thymine. A single strand of DNA (deoxyribonucleic acid) is a polymerof nucleotides linked by covalent bonds between the phosphate group of one nucleotide and the 2-deoxyribose of another nucleotide. This results in a sugar-phosphatesugar- phosphate polymer chain with bases attached to the sugars in the chain. DNA exists as two complementary strands arranged in the form of a double helix. Students should be able to explain how hydrogen bonding between base pairs leads to the two complementary strands of DNA.		

Lesson Date(s)	Торіс	Learning Outcomes From Specification	Key Words & Equations	Notes (Revision tips, exam technique tips, priorities for revision etc.)
	3.3.13.5 Action of Anticancer Drugs	 The Pt(II) complex cisplatin is used as an anticancer drug. Cisplatin prevents DNA replication in cancer cells by a ligand replacement reaction with DNA in which a bond is formed between platinum and a nitrogen atom on guanine. Appreciate that society needs to assess the balance between the benefits and the adverse effects of drugs, such as the anticancer drug cisplatin. Students should be able to: explain why cisplatin prevents DNA replication explain why such drugs can have adverse effects. 		
	3.3.14 Organic Synthesis	The synthesis of an organic compound can involve several steps. Students should be able to: explain why chemists aim to design processes that do not require a solvent and that use non- hazardous starting materials explain why chemists aim to design production methods with fewer steps that have a high percentage atom economy use reactions in this specification to devise a synthesis, with up to four steps, for an organic compound.		

Lesson Date(s)	Торіс	Learning Outcomes From Specification	Key Words & Equations	Notes (Revision tips, exam technique tips, priorities for revision etc.)
	3.3.15 Nuclear Magnetic Resonance Spectroscopy	Appreciation that scientists have developed a range of analytical techniques which together enable the structures of new compounds to be confirmed. Nuclear magnetic resonance (NMR) gives information about the position of ¹³ C or ¹ H atoms in a molecule. ¹³ C NMR gives simpler spectra than ¹ H NMR. The use of the δ scale for recording chemical shift. Chemical shift depends on the molecular environment. Integrated spectra indicate the relative numbers of ¹ H atoms in different environments. ¹ H NMR spectra are obtained using samples dissolved in deuterated solvents or CCl ₄ The use of tetramethylsilane (TMS) as a standard. Students should be able to: explain why TMS is a suitable substance to use as a standard use ¹ H NMR and ¹³ C NMR spectra and chemical shift data from the Chemistry Data Booklet to suggest possible structures or part structures for molecules use integration data from ¹ H NMR spectra to determine the relative numbers of equivalent protons in the molecule use the n+1 rule to deduce the spin–spin splitting patterns of adjacent, non-equivalent protons, limited to doublet, triplet and quartet formation in aliphatic compounds		

Lesson Date(s)	Торіс	Learning Outcomes From Specification	Key Words & Equations	Notes (Revision tips, exam technique tips, priorities for revision etc.)
	3.3.16 Chromatograp hy	Chromatography can be used to separate and identify the components in a mixture. Types of chromatography include: thin-layer chromatography (TLC) – a plate is coated with a solid and a solvent moves up the plate column chromatography (CC) – a column is packed with a solid and a solvent moves down the column gas chromatography (GC) – a column is packed with a solid or with a solid coated by a liquid, and a gas is passed through the column under pressure at high temperature. Separation depends on the balance between solubility in the moving phase and retention by the stationary phase. Retention times and Rf values are used to identify different substances. The use of mass spectrometry to analyse the components separated by GC. Students should be able to: calculate Rf values from a chromatogram compare retention times and Rf values with standards to identify different substances. Required practical 12 Separation of species by thin-layer chromatography.		