CONTENT		Key concepts	√
3.1 Biological Molecules		, ,	
T	ommon chemistry. This provides indirect		
	r, the cells of all living organisms contain on-based compounds that interact in		
Carbohydrates are comm	only used by cells as respiratory substrates. components in plasma membranes and		
Lipids have many uses, income certain hormones and as			
enzymes, chemical messe • Nucleic acids carry the ge	ructures. They are also important as ngers and components of the blood. netic code for the production of proteins. on to viruses and to all living organisms,		
The most common compo	onent of cells is water; hence our search for erse involves a search for liquid water.		
3.1.1 Monomers and Polymers			
basis of life is similar for all living			
	rom which larger molecules are made.		
together.	om a large number of monomers joined		
t	nd nucleotides are examples of monomers.		
	o molecules together with the formation of		
 	elimination of a molecule of water.		
	emical bond between two molecules and		
involves the use of a water molec	cule.		
3.1.2 Carbohydrates	C		
	ners from which larger carbohydrates are		
	ctose are common monosaccharides. n two monosaccharides forms a glycosidic		
Disaccharides are formed by the maltose is a disaccharide molecules sucrose is a disaccharide in molecule and a fructose in	ormed by condensation of a glucose		
	se and β-glucose, know the structures		
Polysaccharides are formed by the Glycogen and starch are f	e condensation of many glucose units. ormed by the condensation of α-glucose. condensation of β-glucose.		
The basic structure and functions	of glycogen, starch and cellulose. The on of these substances in animal and plant		

		I I
	Biochemical tests using Benedict's solution for reducing sugars and non-	
	reducing sugars and iodine/potassium iodide for starch.	
3.1	.3 Lipids	Т
	Triglycerides and phospholipids are two groups of lipid.	
	Triglycerides are formed by the condensation of one molecule of glycerol	
	and three molecules of fatty acid.	
	A condensation reaction between glycerol and a fatty acid (RCOOH) forms	
	an ester bond.	
	The emulsion test for lipids.	
	The R-group of a fatty acid may be saturated or unsaturated.	
	In phospholipids, one of the fatty acids of a triglyceride is substituted by a	
	phosphate-containing group.	
	The different properties of triglycerides and phospholipids related to their	
	different structures.	
	 recognise, from diagrams, saturated and unsaturated fatty acids 	
	 explain the different properties of triglycerides and phospholipids. 	
3.1	.4 Proteins: 3.1.4.1 General properties of proteins	
	Amino acids are the monomers from which proteins are made.	
	The general structure of an amino acid- DRAW IT!!	
	NH2 represents an amine group, COOH represents a carboxyl group and R	
	represents a side chain. The twenty amino acids that are common in all	
	organisms differ only in their side group.	
	A condensation reaction between two amino acids forms a peptide bond.	
	 Dipeptides are formed by the condensation of two amino acids. 	
	 Polypeptides are formed by the condensation of many amino acids. 	
	A functional protein may contain one or more polypeptides.	
	The role of hydrogen bonds, ionic bonds and disulfide bridges in the	
	structure of proteins.	
	Proteins have a variety of functions within all living organisms. The	
	relationship between primary, secondary, tertiary and quaternary structure,	
	and protein function.	
	The biuret test for proteins.	
	Relate the structure of proteins to properties of proteins named throughout	Students should be
	the specification	able to
3.1	.4.2 Many proteins are enzymes	
	Each enzyme lowers the activation energy of the reaction it catalyses.	
	The induced-fit model of enzyme action.	
	The properties of an enzyme relate to the tertiary structure of its active site	
	and its ability to combine with complementary substrate(s) to form an	
	enzyme-substrate complex.	
	The specificity of enzymes	
	The effects of the following factors on the rate of enzyme-controlled	
	reactions – enzyme concentration, substrate concentration, concentration	
	of competitive and of non-competitive inhibitors, pH and temperature.	
	appreciate how models of enzyme action have changed over time	Students should be
	 appreciate flow models of enzyme action have changed over time appreciate that enzymes catalyse a wide range of intracellular and 	able to
	extracellular reactions that determine structures and functions from	asic to
	cellular to whole-organism level	

	REQUIRED PRACTICAL 1 : Investigation into the effect of a named variable	PRACTICAL
AL		PRACTICAL
1	on the rate of an enzyme-controlled reaction.	
PRACTICAL	identify the variables that must be controlled	
PR	calculate the uncertainty of their measurements of the rate of	
	reaction	
	 select an appropriate format for the graphical presentation of the 	
	results	
	 use a tangent to find the initial rate of an enzyme-controlled 	
2.1	reaction .5.1 Structure of DNA and RNA	
3.1	Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are important	
	information-carrying molecules. In all living cells, DNA holds genetic	
	information and RNA transfers genetic information from DNA to the	
	ribosomes.	
	Ribosomes are formed from RNA and proteins.	
	Both DNA and RNA are polymers of nucleotides. Each nucleotide is formed	
	from a pentose, a nitrogen-containing organic base and a phosphate group-	
	DRAW	
	The components of a DNA nucleotide are deoxyribose, a phosphate	
	group and one of the organic bases adenine, cytosine, guanine or	
	thymine.	
	 The components of an RNA nucleotide are ribose, a phosphate 	
	group and one of the organic bases adenine, cytosine, guanine or	
	uracil.	
	A condensation reaction between two nucleotides forms a	
	phosphodiester bond.	
	A DNA molecule is a double helix with two polynucleotide chains held	
	together by hydrogen bonds between specific complementary base pairs.	
	An RNA molecule is a relatively short polynucleotide chain.	
	Appreciate that the relative simplicity of DNA led many scientists to doubt	
	that it carried the genetic code.	
3.1	.5.2 DNA replication	
	The semi-conservative replication of DNA ensures genetic continuity	
	between generations of cells.	
	The process of semi-conservative replication of DNA in terms of:	
	 unwinding of the double helix 	
	 breakage of hydrogen bonds between complementary bases in the 	
	polynucleotide strands	
	 the role of DNA helicase in unwinding DNA and breaking its 	
	hydrogen bonds	
	 attraction of new DNA nucleotides to exposed bases on template 	
	strands and base pairing	
	 the role of DNA polymerase in the condensation reaction that joins 	
	adjacent nucleotides.	
	Evaluate the work of scientists in validating the Watson–Crick model of DNA	Students should be
	replication	able to
3.1	.6 ATP	
	A single molecule of adenosine triphosphate (ATP) is a nucleotide derivative	
	and is formed from a molecule of ribose, a molecule of adenine and three	
	phosphate groups.	
	Hydrolysis of ATP to adenosine diphosphate (ADP) and an inorganic	

	phosphate group (Pi) is catalysed by the enzyme ATP hydrolase.		
	 The hydrolysis of ATP can be coupled to energy-requiring reactions 		
	within cells.		
	 The inorganic phosphate released during the hydrolysis of ATP can 		
	be used to phosphorylate other compounds, often making them		
	more reactive.		
	ATP is resynthesised by the condensation of ADP and Pi. This reaction is		
	catalysed by the enzyme ATP synthase during photosynthesis, or during		
	respiration		
2 1	.7 Water		
3.1		1	
	Water is a major component of cells. It has several properties that are		
	important in biology. In particular, water:		
	 is a metabolite in many metabolic reactions, including condensation 		
	and hydrolysis reactions		
	 is an important solvent in which metabolic reactions occur 		
	 has a relatively high heat capacity, buffering changes in 		
	temperature		
	 has a relatively large latent heat of vaporisation, providing a cooling 		
	effect with little loss of water through evaporation		
	 has strong cohesion between water molecules; this supports 		
	columns of water in the tube-like transport cells of plants and		
	produces surface tension where water meets air.		
2 1	.8 Inorganic ions		
J. 1			
	Inorganic ions occur in solution in the cytoplasm and body fluids of		
	organisms, some in high concentrations and others in very low		
	concentrations.		
	Each type of ion has a specific role, depending on its properties.		
	Recognise the role of ions in the following topics:	Students should be	
	hydrogen ions and pH	able to	
	iron ions as a component of haemoglobin		
	 sodium ions in the co-transport of glucose and amino acids 		
	, , , ,		
	phosphate ions as components of DNA and of ATP		
Ext	ension notes:		

	CONTENT	Key concepts	✓
3.2	Cells		
	 All life on Earth exists as cells. These have basic features in common. Differences between cells are due to the addition of extra features. This provides indirect evidence for evolution. All cells arise from other cells, by binary fission in prokaryotic cells and by mitosis and meiosis in eukaryotic cells. All cells have a cell-surface membrane and, in addition, eukaryotic cells have internal membranes. The basic structure of these plasma membranes is the same and enables control of the passage of substances across exchange surfaces by passive or active transport. Cell-surface membranes contain embedded proteins. Some of these are involved in cell signalling – communication between cells. Others act as antigens, allowing recognition of 'self' and 'foreign' cells by the immune system. Interactions between different types of cell are involved in disease, recovery from disease and prevention of symptoms occurring at a later date if exposed to the same antigen, or antigen-bearing pathogen 		
3.2	.1 Cell structure 3.2.1.1 Structure of eukaryotic cells		
	 The structure of eukaryotic cells, restricted to the structure and function of: cell-surface membrane nucleus (containing chromosomes, consisting of protein-bound, linear DNA, and one or more nucleoli) mitochondria chloroplasts (in plants and algae) Golgi apparatus and Golgi vesicles lysosomes (a type of Golgi vesicle that releases lysozymes) ribosomes rough endoplasmic reticulum and smooth endoplasmic reticulum cell wall (in plants, algae and fungi) cell vacuole (in plants). In complex multicellular organisms, eukaryotic cells become specialised for specific functions. Specialised cells are organised into tissues, tissues into organs and organs into systems 		
	Apply your knowledge of these features in explaining adaptations of eukaryotic cells		
3.2	Prokaryotic cells are much smaller than eukaryotic cells. They also differ from eukaryotic cells in having: cytoplasm that lacks membrane-bound organelles smaller ribosomes no nucleus; instead they have a single circular DNA molecule that is free in the cytoplasm and is not associated with proteins a cell wall that contains murein, a glycoprotein. In addition, many prokaryotic cells have:		
	one or more plasmidsa capsule surrounding the cell		

	one or more flagella. The state of the	
-	Details of these structural differences are not required.	
	Viruses are acellular and non-living. The structure of virus particles to	
	include genetic material, capsid and attachment protein	
	1.3 Methods of studying cells	
	The principles and limitations of optical microscopes, transmission electron	
	microscopes and scanning electron microscopes.	
	Measuring the size of an object viewed with an optical microscope. The	
	difference between magnification and resolution.	
\vdash	Use of the formula:	
	Principles of cell fractionation and ultracentrifugation as used to separate	
	cell components.	Ct. danta dan 1d ha
	Appreciate that there was a considerable period of time during which the	Students should be
	scientific community distinguished between artefacts and cell organelles	able to
	2 All cells arise from other cells	
	Within multicellular organisms, not all cells retain the ability to divide.	
	Eukaryotic cells that do retain the ability to divide show a cell cycle.	
	DNA replication occurs during the interphase of the cell cycle.	
	Mitosis is the part of the cell cycle in which a eukaryotic cell divides to	
	produce two daughter cells, each with the identical copies of DNA produced	
	by the parent cell during DNA replication.	
	The behaviour of chromosomes during interphase, prophase, metaphase,	
	anaphase and telophase of mitosis. The role of spindle fibres attached to	
—	centromeres in the separation of chromatids.	
	Division of the cytoplasm (cytokinesis) usually occurs, producing two new	
	cells.	
	Recognise the stages of the cell cycle: interphase, prophase, restarbase and talanhase (including a talain asia).	
	metaphase, anaphase and telophase (including cytokinesis)	
	Explain the appearance of cells in each stage of mitosis.	
	Mitosis is a controlled process. Uncontrolled cell division can lead to the	
	formation of tumours and of cancers. Many cancer treatments are directed	
-	at controlling the rate of cell division.	
	Binary fission in prokaryotic cells involves:	
	replication of the circular DNA and of plasmids division of the cytoplasm to produce two daughter cells, each with a single	
	copy of the circular DNA and a variable number of copies of plasmids Being non-living, viruses do not undergo cell division. Following injection of	
	their nucleic acid, the infected host cell replicates the virus particles. Required practical 2: Preparation of stained squashes of cells from plant	
	root tips.	
AL	 Set-up and use of an optical microscope to identify the stages of mitosis 	
PRACTICAL	in these stained squashes and calculation of a mitotic index.	
S	 Measure the apparent size of cells in the root tip and calculate their 	
%	actual size using the formula:	
4	actual size using the formula.	
3.2.	3 Transport across cell membranes	
	The basic structure of all cell membranes, including cell-surface membranes	
	and the membranes around the cell organelles of eukaryotes, is the same.	
	The arrangement and any movement of phospholipids, proteins,	
	glycoproteins and glycolipids in the fluid-mosaic model of membrane	Ī

1		
	structure. Cholesterol may also be present in cell membranes where it	
	restricts the movement of other molecules making up the membrane.	
	Movement across membranes occurs by:	
	 simple diffusion (involving limitations imposed by the nature of the 	
	phospholipid bilayer)	
	 facilitated diffusion (involving the roles of carrier proteins and 	
	channel proteins)	
	 osmosis (explained in terms of water potential) 	
	 active transport (involving the role of carrier proteins and the 	
	importance of the hydrolysis of ATP)	
	 co-transport (illustrated by the absorption of sodium ions and 	
	glucose by cells lining the mammalian ileum)	
	Cells may be adapted for rapid transport across their internal or external	
	membranes by an increase in surface area of, or by an increase in the	
	number of protein channels and carrier molecules in, their membranes.	
	 explain the adaptations of specialised cells in relation to the rate of 	Students should be
	transport across their internal and external membranes	able to
	 explain how surface area, number of channel or carrier proteins and 	
	differences in gradients of concentration or water potential affect	
	the rate of movement across cell membranes	
7	Required practical 3: Production of a dilution series of a solute to produce a	PRACTICAL
PRACTICAL	calibration curve with which to identify the water potential of plant tissue.	
E		
ZA(
PR		
	Particular and the Land Control of the Afficiant of the A	DDACTICAL
	Required practical 4: Investigation into the effect of a named variable on	
_		PRACTICAL
CAL	the permeability of cell-surface membranes.	PRACTICAL
TICAL		PRACTICAL
CT		PRACTICAL
PRACTICAL		PRACTICAL
PRACTI		PRACTICAL
PRACTI	the permeability of cell-surface membranes.	PRACTICAL
PRACTI	the permeability of cell-surface membranes. 4 Cell recognition and the immune system	PRACTICAL
PRACTI	the permeability of cell-surface membranes. 4 Cell recognition and the immune system Each type of cell has specific molecules on its surface that identify it. These	PRACTICAL
PRACTI	the permeability of cell-surface membranes. 4 Cell recognition and the immune system Each type of cell has specific molecules on its surface that identify it. These molecules include proteins and enable the immune system to identify:	PRACTICAL
PRACTI	the permeability of cell-surface membranes. 4 Cell recognition and the immune system Each type of cell has specific molecules on its surface that identify it. These molecules include proteins and enable the immune system to identify: • pathogens	PRACTICAL
PRACTI	the permeability of cell-surface membranes. 4 Cell recognition and the immune system Each type of cell has specific molecules on its surface that identify it. These molecules include proteins and enable the immune system to identify: • pathogens • cells from other organisms of the same species	PRACTICAL
PRACTI	the permeability of cell-surface membranes. 4 Cell recognition and the immune system Each type of cell has specific molecules on its surface that identify it. These molecules include proteins and enable the immune system to identify: • pathogens • cells from other organisms of the same species • abnormal body cells	PRACTICAL
PRACTI	the permeability of cell-surface membranes. 4 Cell recognition and the immune system Each type of cell has specific molecules on its surface that identify it. These molecules include proteins and enable the immune system to identify: • pathogens • cells from other organisms of the same species • abnormal body cells • toxins	PRACTICAL
PRACTI	the permeability of cell-surface membranes. 4 Cell recognition and the immune system Each type of cell has specific molecules on its surface that identify it. These molecules include proteins and enable the immune system to identify: • pathogens • cells from other organisms of the same species • abnormal body cells • toxins Definition of antigen. The effect of antigen variability on disease and	PRACTICAL
PRACTI	the permeability of cell-surface membranes. 4 Cell recognition and the immune system Each type of cell has specific molecules on its surface that identify it. These molecules include proteins and enable the immune system to identify: • pathogens • cells from other organisms of the same species • abnormal body cells • toxins Definition of antigen. The effect of antigen variability on disease and disease prevention.	PRACTICAL
PRACTI	the permeability of cell-surface membranes. 4 Cell recognition and the immune system Each type of cell has specific molecules on its surface that identify it. These molecules include proteins and enable the immune system to identify: • pathogens • cells from other organisms of the same species • abnormal body cells • toxins Definition of antigen. The effect of antigen variability on disease and disease prevention. Phagocytosis of pathogens. The subsequent destruction of ingested	PRACTICAL
PRACTI	the permeability of cell-surface membranes. 4 Cell recognition and the immune system Each type of cell has specific molecules on its surface that identify it. These molecules include proteins and enable the immune system to identify: • pathogens • cells from other organisms of the same species • abnormal body cells • toxins Definition of antigen. The effect of antigen variability on disease and disease prevention. Phagocytosis of pathogens. The subsequent destruction of ingested pathogens by lysozymes	PRACTICAL
PRACTI	the permeability of cell-surface membranes. 4 Cell recognition and the immune system Each type of cell has specific molecules on its surface that identify it. These molecules include proteins and enable the immune system to identify: • pathogens • cells from other organisms of the same species • abnormal body cells • toxins Definition of antigen. The effect of antigen variability on disease and disease prevention. Phagocytosis of pathogens. The subsequent destruction of ingested pathogens by lysozymes The response of T lymphocytes to a foreign antigen (the cellular response).	PRACTICAL
PRACTI	### The permeability of cell-surface membranes. #### A Cell recognition and the immune system ### Each type of cell has specific molecules on its surface that identify it. These molecules include proteins and enable the immune system to identify: pathogens	PRACTICAL
PRACTI	### A Cell recognition and the immune system Each type of cell has specific molecules on its surface that identify it. These molecules include proteins and enable the immune system to identify: • pathogens • cells from other organisms of the same species • abnormal body cells • toxins Definition of antigen. The effect of antigen variability on disease and disease prevention. Phagocytosis of pathogens. The subsequent destruction of ingested pathogens by lysozymes The response of T lymphocytes to a foreign antigen (the cellular response). • The role of antigen-presenting cells in the cellular response. • The role of helper T cells (TH cells) in stimulating cytotoxic T cells (TC	PRACTICAL
PRACTI	### A Cell recognition and the immune system Each type of cell has specific molecules on its surface that identify it. These molecules include proteins and enable the immune system to identify: • pathogens • cells from other organisms of the same species • abnormal body cells • toxins Definition of antigen. The effect of antigen variability on disease and disease prevention. Phagocytosis of pathogens. The subsequent destruction of ingested pathogens by lysozymes The response of T lymphocytes to a foreign antigen (the cellular response). • The role of antigen-presenting cells in the cellular response. • The role of helper T cells (TH cells) in stimulating cytotoxic T cells (TC cells), B cells and phagocytes. The role of other T cells is not	PRACTICAL
PRACTI	### A Cell recognition and the immune system Each type of cell has specific molecules on its surface that identify it. These molecules include proteins and enable the immune system to identify: • pathogens • cells from other organisms of the same species • abnormal body cells • toxins Definition of antigen. The effect of antigen variability on disease and disease prevention. Phagocytosis of pathogens. The subsequent destruction of ingested pathogens by lysozymes The response of T lymphocytes to a foreign antigen (the cellular response). • The role of antigen-presenting cells in the cellular response. • The role of helper T cells (TH cells) in stimulating cytotoxic T cells (TC cells), B cells and phagocytes. The role of other T cells is not required.	PRACTICAL
PRACTI	### A Cell recognition and the immune system Each type of cell has specific molecules on its surface that identify it. These molecules include proteins and enable the immune system to identify: • pathogens • cells from other organisms of the same species • abnormal body cells • toxins Definition of antigen. The effect of antigen variability on disease and disease prevention. Phagocytosis of pathogens. The subsequent destruction of ingested pathogens by lysozymes The response of T lymphocytes to a foreign antigen (the cellular response). • The role of antigen-presenting cells in the cellular response. • The role of helper T cells (TH cells) in stimulating cytotoxic T cells (TC cells), B cells and phagocytes. The role of other T cells is not required. The response of B lymphocytes to a foreign antigen, clonal selection and the	PRACTICAL

	Antibody structure.	
	 The formation of an antigen-antibody complex, leading to the 	
	destruction of the antigen, limited to agglutination and phagocytosis	
	of bacterial cells.	
	 The roles of plasma cells and of memory cells in producing primary 	
	and secondary immune responses.	
	The use of vaccines to provide protection for individuals and populations	
	against disease. The concept of herd immunity.	
	The differences between active and passive immunity	
	Structure of the human immunodeficiency virus (HIV) and its replication in	
	helper T cells.	
	How HIV causes the symptoms of AIDS. Why antibiotics are ineffective	
	against viruses.	
	The use of monoclonal antibodies in:	
	 targeting medication to specific cell types by attaching a therapeutic 	
	drug to an antibody	
	medical diagnosis	
	Details of the commercial or scientific production of monoclonal antibodies	
	are not required.	
	Ethical issues associated with the use of vaccines and monoclonal	
	antibodies.	
	The use of antibodies in the ELISA test.	
	Ethical issues associated with the use of vaccines and monoclonal antibodies	
	evaluate methodology, evidence and data relating to the use of vaccines	
	and monoclonal antibodies.	
EX1	rension notes:	

2.2 Organisms evolungs substances with their environment		\neg
3.3 Organisms exchange substances with their environment		
The internal environment of a cell or organism is different from its external		
environment. The exchange of substances between the internal and		
external environments takes place at exchange surfaces. To truly enter or		
leave an organism, most substances must cross cell plasma membranes		
In large multicellular organisms, the immediate environment of cells is		
some form of tissue fluid. Most cells are too far away from exchange		
surfaces, and from each other, for simple diffusion alone to maintain the		
composition of tissue fluid within a suitable metabolic range. In large		
organisms, exchange surfaces are associated with mass transport systems		
that carry substances between the exchange surfaces and the rest of the		
body and between parts of the body. Mass transport maintains the final		
diffusion gradients that bring substances to and from the cell membranes of		
individual cells. It also helps to maintain the relatively stable environment		
that is tissue fluid.		
3.3.1 Surface area to volume ratio		
The relationship between the size of an organism or structure and its		
surface area to volume ratio.		
Changes to body shape and the development of systems in larger organisms		
as adaptations that facilitate exchange as this ratio reduces.		
Appreciate the relationship between surface area to volume ratio and		
metabolic rate		
3.3.2 Gas exchange	T	
Adaptations of gas exchange surfaces, shown by gas exchange:		
 across the body surface of a single-celled organism 		
 in the tracheal system of an insect (tracheae, tracheoles and 		
spiracles)		
 across the gills of fish (gill lamellae and filaments including the 		
counter-current principle)		
 by the leaves of dicotyledonous plants (mesophyll and stomata) 		
Structural and functional compromises between the opposing needs for		
efficient gas exchange and the limitation of water loss shown by terrestrial		
insects and xerophytic plants.		
The gross structure of the human gas exchange system limited to the		
alveoli, bronchioles, bronchi, trachea and lungs.		
The essential features of the alveolar epithelium as a surface over which gas		
exchange takes place.		
Ventilation and the exchange of gases in the lungs. The mechanism of		
breathing to include the role of the diaphragm and the antagonistic		
interaction between the external and internal intercostal muscles in		
bringing about pressure changes in the thoracic cavity.		_
• interpret information relating to the effects of lung disease on gas	Students should be	
exchange and/or ventilation	able to	
 interpret data relating to the effects of pollution and smoking on the 		
incidence of lung disease		
analyse and interpret data associated with specific risk factors and		
the incidence of lung disease		
 evaluate the way in which experimental data led to statutory 		

	modulations on the source of viel fronts		
	restrictions on the sources of risk factors		
	recognise correlations and causal relationships		
3.3	.3 Digestion and absorption	<u> </u>	
	During digestion, large biological molecules are hydrolysed to smaller		
	molecules that can be absorbed across cell membranes.		-
	Digestion in mammals of:		
	 carbohydrates by amylases and membrane-bound disaccharidases 		
	 lipids by lipase, including the action of bile salts 		
	 proteins by endopeptidases, exopeptidases and membrane-bound 		
	dipeptidases		
	Mechanisms for the absorption of the products of digestion by cells lining		
	the ileum of mammals, to include:		
	 co-transport mechanisms for the absorption of amino acids and of 		
	monosaccharides		
	 the role of micelles in the absorption of lipids 		
3.3	.4 Mass Transport		
	Over large distances, efficient movement of substance to and from		
	exchange surfaces is provided by mass transport		
3.3	.4.1 Mass transport in animals		
	The haemoglobins are a group of chemically similar molecules found in		
	many different organisms. Haemoglobin is a protein with a quaternary		
	structure.		
	The role of haemoglobin and red blood cells in the transport of oxygen. The		
	loading, transport and unloading of oxygen in relation to the		
	oxyhaemoglobin dissociation curve.		
	The cooperative nature of oxygen binding to show that the change in shape		
	of haemoglobin caused by binding of the first oxygens makes the binding of		
	further oxygens easier. The effects of carbon dioxide concentration on the		
	dissociation of oxyhaemoglobin (the Bohr effect).		
	Many animals are adapted to their environment by possessing different		
	types of haemoglobin with different oxygen transport properties.		
	The general pattern of blood circulation in a mammal. Names are required		
	only of the coronary arteries and of the blood vessels entering and leaving		
	the heart, lungs and kidneys		
	The gross structure of the human heart. Pressure and volume changes and		
	associated valve movements during the cardiac cycle that maintain a		
	unidirectional flow of blood.		
	The structure of arteries, arterioles and veins in relation to their function.		
	The structure of capillaries and the importance of capillary beds as		
	exchange surfaces. The formation of tissue fluid and its return to the		
	circulatory system.		
	analyse and interpret data relating to pressure and volume changes	Students should be	
	during the cardiac cycle	able to	
	 analyse and interpret data associated with specific risk factors and 		
	the incidence of cardiovascular disease		
	 evaluate conflicting evidence associated with risk factors affecting 		
	cardiovascular disease		
	 recognise correlations and causal relationships 		
	- recognise correlations and causar relationsinps		

	Required practical 5: Dissection of animal or plant gas exchange system or	PRACTICAL	
ZAL	mass transport system or of organ within such a system.		
CTICAL			
3AC			
PF			
3.3	.4.2 Mass transport in plants	1	
	Xylem as the tissue that transports water in the stem and leaves of plants.		
	The cohesion-tension theory of water transport in the xylem.		_
	Phloem as the tissue that transports organic substances in plants. The mass flow hypothesis for the mechanism of translocation in plants. The use of		
	tracers and ringing experiments to investigate transport in plants.		
	recognise correlations and causal relationships	Students should be	
	 interpret evidence from tracer and ringing experiments and to 	able to	
	evaluate the evidence for and against the mass flow hypothesis		
Ext	ension Notes:		

3.4 Genetic information, variation and relationships between organisms Biological diversity – biodiversity – is reflected in the vast number of species of organisms, in the variation of individual characteristics within a single species and in the variation of cell types within a single multicellular organism. Differences between species reflect genetic differences. Differences between individuals within a species could be the result of genetic factors, of environmental factors, or a combination of both. A gene is a section of DNA located at a particular site on a DNA molecule, called its locus. The base sequence of each gene carries the coded genetic information that determines the sequence of amino acids during protein synthesis. The genetic code used is the same in all organisms, providing indirect evidence for evolution. Genetic diversity within a species can be caused by gene mutation, chromosome mutation or random factors associated with meiosis and fertilisation. This genetic diversity is acted upon by natural selection, resulting in species becoming better adapted to their environment. • Variation within a species can be measured using differences in the base sequence of DNA or in the amino acid sequence of proteins. • Biodiversity within a community can be measured using species richness and an index of diversity. 3.4.1 DNA, genes and chromosomes In prokaryotic cells, DNA molecules are short, circular and not associated with proteins. In the nucleus of eukaryotic cells, DNA molecules are very long, linear and associated with proteins, called histones. Together a DNA molecule and its associated proteins form a chromosome. The mitochondria and chloroplasts of eukaryotic cells also contain DNA which, like the DNA of prokaryotes, is short, circular and not associated with protein. A gene is a base sequence of DNA that codes for: the amino acid sequence of a polypeptide a functional RNA (including ribosomal RNA and tRNAs) A gene occupies a fixed position, called a locus, on a particular DNA molecule. A sequence of three DNA bases, called a triplet, codes for a specific amino acid. The genetic code is universal, non-overlapping and degenerate. In eukaryotes, much of the nuclear DNA does not code for polypeptides. There are, for example, non-coding multiple repeats of base sequences between genes. Even within a gene only some sequences, called exons, code for amino acid sequences. Within the gene, these exons are separated by one or more non-coding sequences, called introns. 3.4.2 DNA and protein synthesis The concept of the genome as the complete set of genes in a cell and of the proteome as the full range of proteins that a cell is able to produce. The structure of molecules of messenger RNA (mRNA) and of transfer RNA (tRNA).

Transcription as the production of mRNA from DNA. The role of RNA	
polymerase in joining mRNA nucleotides.	
In prokaryotes, transcription results directly in the production of mRNA from DNA.	
In eukaryotes, transcription results in the production of pre-mRNA; this is then spliced to form mRNA.	
Translation as the production of polypeptides from the sequence of codons carried by mRNA. The roles of ribosomes, tRNA and ATP.	
relate the base sequence of nucleic acids to the amino acid sequence	Students should be
of polypeptides, when provided with suitable data about the genetic code	able to
 interpret data from experimental work investigating the role of nucleic acids 	
3.4.3 Genetic diversity can arise as a result of mutation or during meiosis	
Gene mutations involve a change in the base sequence of chromosomes.	
They can arise spontaneously during DNA replication and include base	
deletion and base substitution. Due to the degenerate nature of the genetic	
code, not all base substitutions cause a change in the sequence of encoded	
amino acids. Mutagenic agents can increase the rate of gene mutation.	
Mutations in the number of chromosomes can arise spontaneously by chromosome non-disjunction during meiosis.	
Meiosis produces daughter cells that are genetically different from each	
other.	
The process of meiosis only in sufficient detail to show how:	
two nuclear divisions result usually in the formation of four haploid	
daughter cells from a single diploid parent cell	
genetically different daughter cells result from the independent	
segregation of homologous chromosomes	
 crossing over between homologous chromosomes results in further 	
genetic variation among daughter cells	
complete diagrams showing the chromosome content of cells after the first and second meiotic division, when given the chromosome content of the parent cell	Students should be able to
explain the different outcome of mitosis and meiosis	
recognise where meiosis occurs when given information about an	
unfamiliar life cycle	
explain how random fertilisation of haploid gametes further	
increases genetic variation within a species	
3.4.4 Genetic diversity and adaptation	
Genetic diversity as the number of different alleles of genes in a population.	
Genetic diversity is a factor enabling natural selection to occur.	
The principles of natural selection in the evolution of populations.	
Random mutation can result in new alleles of a gene.	
Many mutations are harmful but, in certain environments, the new allele of	
a gene might benefit its possessor, leading to increased reproductive	
success.	
The advantageous allele is inherited by members of the next generation.	
As a result, over many generations, the new allele increases in frequency in	
the population.	
Directional selection, exemplified by antibiotic resistance in bacteria, and	

		1
	stabilising selection, exemplified by human birth weights.	
	Natural selection results in species that are better adapted to their	
	environment. These adaptations may be anatomical, physiological or	
	behavioural.	
	 use unfamiliar information to explain how selection produces 	Students should be
	changes within a population of a species	able to
	 interpret data relating to the effect of selection in producing change 	
	within populations	
	 show understanding that adaptation and selection are major factors 	
	in evolution and contribute to the diversity of living organisms	
	Required practical 6: Use of aseptic techniques to investigate the effect of	PRACTICAL
7	antimicrobial substances on microbial growth	
PRACTICAL		
CT		
₩.		
Ы		
3.4	.5 Species and Taxonomy	
	Two organisms belong to the same species if they are able to produce	
	fertile offspring. Courtship behaviour as a necessary precursor to successful	
	mating. The role of courtship in species recognition.	
	A phylogenetic classification system attempts to arrange species into groups	
	based on their evolutionary origins and relationships. It uses a hierarchy in	
	which smaller groups are placed within larger groups, with no overlap	
	between groups. Each group is called a taxon (plural taxa).	
	One hierarchy comprises the taxa: domain, kingdom, phylum, class, order,	
	family, genus and species.	
	Each species is universally identified by a binomial consisting of the name of	
	its genus and species, eg, Homo sapiens. Recall of different taxonomic	
	systems, such as the three domain or five kingdom systems, will not be	
	required.	
	Appreciate that advances in immunology and genome sequencing help to	Students should be
	clarify evolutionary relationships between organisms.	able to
3.4	.6 Biodiversity within a community	<u> </u>
	Biodiversity can relate to a range of habitats, from a small local habitat to	
	the Earth.	
	Species richness is a measure of the number of different species in a	
	community.	
	An index of diversity describes the relationship between the number of	
	species in a community and the number of individuals in each species.	
	·	
	Calculation of an index of diversity () from the formula	
	where = total number of organisms of all species	
	and = total number of organisms of each species.	
	Farming techniques reduce biodiversity. The balance between conservation	
	and farming.	
3.4	.7 Investigating diversity	ı L
	Genetic diversity within, or between species, can be made by comparing:	
	the frequency of measurable or observable characteristics	

	the base sequence of DNA		
	the base sequence of mRNA		
	the amino acid sequence of the proteins encoded by DNA and mRNA		
	 interpret data relating to similarities and differences in the base 	Students should be	
	sequences of DNA and in the amino acid sequences of proteins to	able to	
	suggest relationships between different organisms within a species and between species		
	 appreciate that gene technology has caused a change in the 		
	methods of investigating genetic diversity; inferring DNA differences		
	from measurable or observable characteristics has been replaced by		
	direct investigation of DNA sequences		
	Knowledge of gene technologies will not be tested.		
	Quantitative investigations of variation within a species involve:		
	 collecting data from random samples 		
	 calculating a mean value of the collected data and the standard 		
	deviation of that mean		
	 interpreting mean values and their standard deviations. 		
	Students will not be required to calculate standard deviations in written		
	papers		
Ext	ension notes:		

	sequences of DNA and in the amino acid sequences of proteins to suggest relationships between different organisms within a species	able to	
	and between species		
	appreciate that gene technology has caused a change in the		
	methods of investigating genetic diversity; inferring DNA differences		
	from measurable or observable characteristics has been replaced by		ı
	direct investigation of DNA sequences		1
	Knowledge of gene technologies will not be tested.		1
	Quantitative investigations of variation within a species involve:		
	 collecting data from random samples 		ı
	 calculating a mean value of the collected data and the standard 		1
	deviation of that mean		
	 interpreting mean values and their standard deviations. 		1
	Students will not be required to calculate standard deviations in written		1
	papers		
Ex	tension notes:		

3.5 Energy transfers in and between organisms Life depends on continuous transfers of energy. • In photosynthesis, light is absorbed by chlorophyll and this is linked to the production of ATP. • In respiration, various substances are used as respiratory substrates. The hydrolysis of these respiratory substrates is linked to the production of ATP. • In both respiration and photosynthesis, ATP production occurs when protons diffuse down an electrochemical gradient through molecules of the enzyme ATP synthase, embedded in the membranes of cellular organelles. The process of photosynthesis is common in all photoautotrophic organisms and the process of respiration is common in all organisms, providing indirect evidence for evolution. In communities, the biological molecules produced by photosynthesis are consumed by other organisms, including animals, bacteria and fungi. Some of these are used as respiratory substrates by these consumers. • Photosynthesis and respiration are not 100% efficient. The transfer of biomass and its stored chemical energy in a community from one organism to a consumer is also not 100% efficient. 3.5.1 Photosynthesis The light-dependent reaction in such detail as to show that: chlorophyll absorbs light, leading to photoionisation of chlorophyll • some of the energy from electrons released during photoionisation is conserved in the production of ATP and reduced NADP the production of ATP involves electron transfer associated with the transfer of electrons down the electron transfer chain and passage of protons across chloroplast membranes and is catalysed by ATP synthase embedded in these membranes (chemiosomotic theory) • photolysis of water produces protons, electrons and oxygen The light-independent reaction uses reduced NADP from the lightdependent reaction to form a simple sugar. The hydrolysis of ATP, also from the light-dependent reaction, provides the additional energy for this reaction. The light-independent reaction in such detail as to show that: carbon dioxide reacts with ribulose bisphosphate (RuBP) to form two molecules of glycerate 3-phosphate (GP). This reaction is catalysed by the enzyme rubisco ATP and reduced NADP from the light-dependent reaction are used to reduce GP to triose phosphate • some of the triose phosphate is used to regenerate RuBP in the Calvin cycle some of the triose phosphate is converted to useful organic substances • identify environmental factors that limit the rate of photosynthesis Students should be evaluate data relating to common agricultural practices used to able to ... overcome the effect of these limiting factors

PRACTICAL	Required practical 7 : Use of chromatography to investigate the pigments isolated from leaves of different plants, eg, leaves from shade-tolerant and shade-intolerant plants or leaves of different colours.	PRACTICAL
PRACTICAL	Required practical 8: Investigation into the effect of a named factor on the rate of dehydrogenase activity in extracts of chloroplasts.	PRACTICAL
3.5	.2 Respiration	
	Respiration produces ATP.	
	Glycolysis is the first stage of anaerobic and aerobic respiration. It occurs in	
	the cytoplasm and is an anaerobic process.	
	Glycolysis involves the following stages:	
	phosphorylation of glucose to glucose phosphate, using ATP	
	production of triose phosphate	
	 oxidation of triose phosphate to pyruvate with a net gain of ATP and reduced NAD 	
	If respiration is only anaerobic, pyruvate can be converted to ethanol or	
	lactate using reduced NAD. The oxidised NAD produced in this way can be	
	used in further glycolysis.	
	If respiration is aerobic, pyruvate from glycolysis enters the mitochondrial	
	matrix by active transport.	
	Aerobic respiration in such detail as to show that:	
	• pyruvate is oxidised to acetate, producing reduced NAD in the process	
	 acetate combines with coenzyme A in the link reaction to produce acetylcoenzyme A 	
	 acetylcoenzyme A reacts with a four-carbon molecule, releasing coenzyme A and producing a six-carbon molecule that enters the Krebs cycle 	
	 in a series of oxidation-reduction reactions, the Krebs cycle generates reduced coenzymes and ATP by substrate-level phosphorylation, and carbon dioxide is lost 	
	 synthesis of ATP by oxidative phosphorylation is associated with the transfer of electrons down the electron transfer chain and passage of protons across inner mitochondrial membranes and is catalysed by ATP synthase embedded in these membranes (chemiosomotic theory) 	
	 other respiratory substrates include the breakdown products of lipids and amino acids, which enter the Krebs cycle 	
	Required practical 9: Investigation into the effect of a named variable on	PRACTICAL
PRACTICAL	the rate of respiration of cultures of single-celled organisms	
3.5	.3 Energy and ecosystems	
	In any ecosystem, plants synthesise organic compounds from atmospheric,	
	or aquatic, carbon dioxide.	
		· L

	Most of the sugars synthesised by plants are used by the plant as		
	respiratory substrates. The rest are used to make other groups of biological		
	molecules. These biological molecules form the biomass of the plants.		
	Biomass can be measured in terms of mass of carbon or dry mass of tissue		
	per given area. The chemical energy store in dry biomass can be estimated using calorimetry.		
	Gross primary production () is the chemical energy store in plant		
	biomass, in a given area or volume.		
	Net primary production () is the chemical energy store in plant biomass		
	after respiratory losses to the environment have been taken into account,		
	ie		
	where represents gross production and represents respiratory		
	losses to the environment.		
	This net primary production is available for plant growth and reproduction.		
	It is also available to other trophic levels in the ecosystem, such as		
	herbivores and decomposers.		
	The net production of consumers (), such as animals, can be calculated		
	as:		
	where		
	represents the chemical energy store in ingested food,		
	represents the chemical energy store in higested rood,		
	represents the chemical energy lost to the environment in faeces and		
	urine		
	represents the respiratory losses to the environment.		
	Primary and secondary productivity is the rate of primary or secondary		
	production, respectively. It is measured as biomass in a given area in a given		
	time eg kJ ha–1 year–1.		
	Appreciate the ways in which production is affected by farming practices	Students should be	
	designed to increase the efficiency of energy transfer by:	able to	
	simplifying food webs to reduce energy losses to non-human food chains		
	reducing respiratory losses within a human food chain. Nutrious Coolses		
3.5	Nutrient Cycles	T	
	Nutrients are recycled within natural ecosystems, exemplified by the nitrogen cycle and the phosphorus cycle.		
	Microorganisms play a vital role in recycling chemical elements such as		
	phosphorus and nitrogen.		
	The role of saprobionts in decomposition.		
	The role of mycorrhizae in facilitating the uptake of water and inorganic		
	ions by plants.		
	The role of bacteria in the nitrogen cycle in sufficient detail to illustrate the		
	processes of saprobiotic nutrition, ammonification, nitrification, nitrogen		
	fixation and denitrification. (The names of individual species of bacteria are		
	not required).		
-			

	The use of natural and artificial fertilisers to replace the nitrates and	
	phosphates lost by harvesting plants and removing livestock.	
	The environmental issues arising from the use of fertilisers including	
	leaching and eutrophication.	
Ext	ension notes:	

2.6	Organisms respond to shanges in their internal and external environments
٥.د	Organisms respond to changes in their internal and external environments
	A stimulus is a change in the internal or external environment. A
	receptor detects a stimulus. A coordinator formulates a suitable
	response to a stimulus. An effector produces a response.
	Receptors are specific to one type of stimulus.
	Nerve cells pass electrical impulses along their length. A nerve impulse is
	specific to a target cell only because it releases a chemical messenger
	directly onto it, producing a response that is usually rapid, short-lived
	and localised.
	In contrast, mammalian hormones stimulate their target cells via the
	blood system. They are specific to the tertiary structure of receptors on
	their target cells and produce responses that are usually slow, long-
	lasting and widespread.
	Plants control their response using hormone-like growth substances.
3.6	.1 Stimuli, both internal and external, are detected and lead to a response
3.6	.1.1 Survival and response
	Organisms increase their chance of survival by responding to changes in
	their environment.
	In flowering plants, specific growth factors move from growing regions to
	other tissues, where they regulate growth in response to directional stimuli.
	The effect of different concentrations of indoleacetic acid (IAA) on cell
	elongation in the roots and shoots of flowering plants as an explanation of
	gravitropism and phototropism in flowering plants.
	Taxes and kineses as simple responses that can maintain a mobile organism
	in a favourable environment.
	The protective effect of a simple reflex, exemplified by a three-neurone
	simple reflex.
	Required practical 10: Investigation into the effect of an environmental
CAL	variable on the movement of an animal using either a choice chamber or a
	maze.
PRACTI	
Ы	
3.6	.1.2 Receptors
	The Pacinian corpuscle should be used as an example of a receptor to
	illustrate that:
	receptors respond only to specific stimuli
	stimulation of a receptor leads to the establishment of a generator
	potential
	The basic structure of a Pacinian corpuscle.
	Deformation of stretch-mediated sodium ion channels in a Pacinian
	corpuscle leads to the establishment of a generator potential.
	The human retina in sufficient detail to show how differences in sensitivity
	to light, sensitivity to colour and visual acuity are explained by differences in
	the optical pigments of rods and cones and the connections rods and cones
	make in the optic nerve.
3.6	.1.3 Control of heart rate
	Myogenic stimulation of the heart and transmission of a subsequent wave
	of electrical activity. The roles of the sinoatrial node (SAN), atrioventricular
	· · · · · · · · · · · · · · · · · · ·

node (AVN) and Purkyne tissue in the bundle of His.		
The roles and locations of chemoreceptors and pressure receptors and the		
roles of the autonomic nervous system and effectors in controlling heart		
rate.		
3.6.2 Nervous coordination		
3.6.2.1 Nerve impulses	1	
The structure of a myelinated motor neurone.		
The establishment of a resting potential in terms of differential membrane		
permeability, electrochemical gradients and the movement of sodium ions		
and potassium ions.		
Changes in membrane permeability lead to depolarisation and the		
generation of an action potential. The all-or-nothing principle.		
The passage of an action potential along non-myelinated and myelinated		
axons, resulting in nerve impulses.		
The nature and importance of the refractory period in producing discrete		
impulses and in limiting the frequency of impulse transmission.		
Factors affecting the speed of conductance: myelination and saltatory		
conduction; axon diameter; temperature.		
3.6.2.2 Synaptic transmission		
The detailed structure of a synapse and of a neuromuscular junction.		
The sequence of events involved in transmission across a cholinergic		
synapse in sufficient detail to explain:		
unidirectionality		
temporal and spatial summation		
inhibition by inhibitory synapses		
A comparison of transmission across a cholinergic synapse and across a		
neuromuscular junction.	6. 1 . 1 . 1 . 1	
Use information provided to predict and explain the effects of specific drugs	Students should be	
on a synapse.	able to	
3.6.3 Skeletal muscles are stimulated to contract by nerves and act as effectors		
Muscles act in antagonistic pairs against an incompressible skeleton.		
Gross and microscopic structure of skeletal muscle. The ultrastructure of a myofibril.		
The roles of actin, myosin, calcium ions and ATP in myofibril contraction.		
The roles of calcium ions and tropomyosin in the cycle of actinomyosin		
bridge formation. (The role of troponin is not required.)		
The roles of ATP and phosphocreatine in muscle contraction.		
The structure, location and general properties of slow and fast skeletal		
muscle fibres.		
3.6.4 Homeostasis is the maintenance of a stable internal environment		
3.6.4.1 Principles of homeostasis and negative feedback	1	
Homeostasis in mammals involves physiological control systems that		
maintain the internal environment within restricted limits.		
The importance of maintaining a stable core temperature and stable blood		
pH in relation to enzyme activity.		
The importance of maintaining a stable blood glucose concentration in		
terms of availability of respiratory substrate and of the water potential of		
blood.		
Negative feedback restores systems to their original level.		
The possession of separate mechanisms involving negative feedback		
controls departures in different directions from the original state, giving a		

Interpret information relating to examples of negative and positive feedback. 6.4.2 Control of blood glucose concentration The factors that influence blood glucose concentration. The role of the liver in glycogenesis, glycogenolysis and gluconeogenesis. The action of insulin by: • attaching to receptors on the surfaces of target cells • controlling the uptake of glucose by regulating the inclusion of channel proteins in the surface membranes of target cells • activating enzymes involved in the conversion of glucose to glycogen The action of glucagon by: • attaching to receptors on the surfaces of target cells • activating enzymes involved in the conversion of glycogen to glucose • activating enzymes involved in the conversion of glycorol and amino acids into glucose The role of adrenaline by: • attaching to receptors on the surfaces of target cells • activating enzymes involved in the conversion of glycogen to glucose The role of adrenaline by: • attaching to receptors on the surfaces of target cells • activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet. evaluate the positions of health advisers and the food industry in relation to	### seedback. 3.6.4.2 Control of blood glucose concentration The factors that influence blood glucose concentration. The role of the liver in glycogenesis, glycogenolysis and gluconeogenesis. The action of insulin by: • attaching to receptors on the surfaces of target cells • controlling the uptake of glucose by regulating the inclusion of channel proteins in the surface membranes of target cells • activating enzymes involved in the conversion of glucose to glycogen The action of glucagon by: • attaching to receptors on the surfaces of target cells • activating enzymes involved in the conversion of glycogen to glucose • activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: • attaching to receptors on the surfaces of target cells • activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase.		greater degree of control.		
The factors that influence blood glucose concentration The role of the liver in glycogenesis, glycogenolysis and gluconeogenesis. The action of insulin by: attaching to receptors on the surfaces of target cells controlling the uptake of glucose by regulating the inclusion of channel proteins in the surface membranes of target cells activating enzymes involved in the conversion of glucose to glycogen The action of glucagon by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet.	3.6.4.2 Control of blood glucose concentration The factors that influence blood glucose concentration. The role of the liver in glycogenesis, glycogenolysis and gluconeogenesis. The action of insulin by: • attaching to receptors on the surfaces of target cells • controlling the uptake of glucose by regulating the inclusion of channel proteins in the surface membranes of target cells • activating enzymes involved in the conversion of glucose to glycogen The action of glucagon by: • attaching to receptors on the surfaces of target cells • activating enzymes involved in the conversion of glycogen to glucose • activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: • attaching to receptors on the surfaces of target cells • activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase.		Interpret information relating to examples of negative and positive	Students should be	
The factors that influence blood glucose concentration. The role of the liver in glycogenesis, glycogenolysis and gluconeogenesis. The action of insulin by: • attaching to receptors on the surfaces of target cells • controlling the uptake of glucose by regulating the inclusion of channel proteins in the surface membranes of target cells • activating enzymes involved in the conversion of glucose to glycogen The action of glucagon by: • attaching to receptors on the surfaces of target cells • activating enzymes involved in the conversion of glycogen to glucose • activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: • attaching to receptors on the surfaces of target cells • activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet.	The factors that influence blood glucose concentration. The role of the liver in glycogenesis, glycogenolysis and gluconeogenesis. The action of insulin by: • attaching to receptors on the surfaces of target cells • controlling the uptake of glucose by regulating the inclusion of channel proteins in the surface membranes of target cells • activating enzymes involved in the conversion of glucose to glycogen The action of glucagon by: • attaching to receptors on the surfaces of target cells • activating enzymes involved in the conversion of glycogen to glucose • activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: • attaching to receptors on the surfaces of target cells • activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase.		feedback.	able to	
The role of the liver in glycogenesis, glycogenolysis and gluconeogenesis. The action of insulin by: attaching to receptors on the surfaces of target cells controlling the uptake of glucose by regulating the inclusion of channel proteins in the surface membranes of target cells activating enzymes involved in the conversion of glucose to glycogen The action of glucagon by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet.	The role of the liver in glycogenesis, glycogenolysis and gluconeogenesis. The action of insulin by: attaching to receptors on the surfaces of target cells controlling the uptake of glucose by regulating the inclusion of channel proteins in the surface membranes of target cells activating enzymes involved in the conversion of glucose to glycogen The action of glucagon by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase.	3.6	.4.2 Control of blood glucose concentration		
The action of insulin by: attaching to receptors on the surfaces of target cells controlling the uptake of glucose by regulating the inclusion of channel proteins in the surface membranes of target cells activating enzymes involved in the conversion of glucose to glycogen The action of glucagon by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet.	The action of insulin by: attaching to receptors on the surfaces of target cells controlling the uptake of glucose by regulating the inclusion of channel proteins in the surface membranes of target cells activating enzymes involved in the conversion of glucose to glycogen The action of glucagon by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase.		The factors that influence blood glucose concentration.		
 attaching to receptors on the surfaces of target cells controlling the uptake of glucose by regulating the inclusion of channel proteins in the surface membranes of target cells activating enzymes involved in the conversion of glucose to glycogen The action of glucagon by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet. 	 attaching to receptors on the surfaces of target cells controlling the uptake of glucose by regulating the inclusion of channel proteins in the surface membranes of target cells activating enzymes involved in the conversion of glucose to glycogen The action of glucagon by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. 		The role of the liver in glycogenesis, glycogenolysis and gluconeogenesis.		
 controlling the uptake of glucose by regulating the inclusion of channel proteins in the surface membranes of target cells activating enzymes involved in the conversion of glucose to glycogen The action of glucagon by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet. 	 controlling the uptake of glucose by regulating the inclusion of channel proteins in the surface membranes of target cells activating enzymes involved in the conversion of glucose to glycogen The action of glucagon by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. 		The action of insulin by:		
proteins in the surface membranes of target cells	proteins in the surface membranes of target cells activating enzymes involved in the conversion of glucose to glycogen The action of glucagon by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase.		 attaching to receptors on the surfaces of target cells 		
 activating enzymes involved in the conversion of glucose to glycogen The action of glucagon by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet. 	 activating enzymes involved in the conversion of glucose to glycogen The action of glucagon by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. 		 controlling the uptake of glucose by regulating the inclusion of channel 		
The action of glucagon by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet.	The action of glucagon by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase.		proteins in the surface membranes of target cells		
 attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet. 	 attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. 		 activating enzymes involved in the conversion of glucose to glycogen 		
 activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet. 	 activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. 		The action of glucagon by:		
 activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet. 	 activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. 		 attaching to receptors on the surfaces of target cells 		
acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet.	acids into glucose The role of adrenaline by: • attaching to receptors on the surfaces of target cells • activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase.		 activating enzymes involved in the conversion of glycogen to glucose 		
The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet.	The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase.		 activating enzymes involved in the conversion of glycerol and amino 		
 attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet. 	 attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. 		acids into glucose		
 activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet. 	activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase.		The role of adrenaline by:		
The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet.	The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase.		 attaching to receptors on the surfaces of target cells 		
adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet.	adenylate cyclase, cyclic AMP (cAMP) and protein kinase.		 activating enzymes involved in the conversion of glycogen to glucose 		
The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet.			The second messenger model of adrenaline and glucagon action, involving		
manipulation of the diet.	The causes of types I and II diabetes and their control by insulin and/or		adenylate cyclase, cyclic AMP (cAMP) and protein kinase.		
·			The causes of types I and II diabetes and their control by insulin and/or		
evaluate the positions of health advisers and the food industry in relation to	·		•		
	evaluate the positions of health advisers and the food industry in relation to		•		
	·				
	the increased incidence of type II diabetes	Ţ		PRACTICAL	
and use of colorimetric techniques to produce a calibration curve with	the increased incidence of type II diabetes Required practical 11: Production of a dilution series of a glucose solution PRACTICAL	<u> </u>	·		
which to identify the concentration of glucose in an unknown 'urine' sample	the increased incidence of type II diabetes Required practical 11: Production of a dilution series of a glucose solution PRACTICAL	\vdash	which to identify the concentration of glucose in an unknown 'urine' sample		
	the increased incidence of type II diabetes Required practical 11: Production of a dilution series of a glucose solution PRACTICAL	\simeq			
	the increased incidence of type II diabetes Required practical 11: Production of a dilution series of a glucose solution PRACTICAL	PRAC			
	the increased incidence of type II diabetes Required practical 11: Production of a dilution series of a glucose solution and use of colorimetric techniques to produce a calibration curve with which to identify the concentration of glucose in an unknown 'urine' sample		4.2 Control of blood water metertial		
6.4.3 Control of blood water potential	the increased incidence of type II diabetes Required practical 11: Production of a dilution series of a glucose solution and use of colorimetric techniques to produce a calibration curve with which to identify the concentration of glucose in an unknown 'urine' sample 3.6.4.3 Control of blood water potential		·		
6.4.3 Control of blood water potential Osmoregulation as control of the water potential of the blood.	the increased incidence of type II diabetes Required practical 11: Production of a dilution series of a glucose solution and use of colorimetric techniques to produce a calibration curve with which to identify the concentration of glucose in an unknown 'urine' sample 3.6.4.3 Control of blood water potential Osmoregulation as control of the water potential of the blood.		Osmoregulation as control of the water potential of the blood.		
6.4.3 Control of blood water potential Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone	the increased incidence of type II diabetes Required practical 11: Production of a dilution series of a glucose solution and use of colorimetric techniques to produce a calibration curve with which to identify the concentration of glucose in an unknown 'urine' sample 3.6.4.3 Control of blood water potential Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone		Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone		
6.4.3 Control of blood water potential Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation.	the increased incidence of type II diabetes Required practical 11: Production of a dilution series of a glucose solution and use of colorimetric techniques to produce a calibration curve with which to identify the concentration of glucose in an unknown 'urine' sample 3.6.4.3 Control of blood water potential Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation.		Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation.		
Control of blood water potential Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in:	the increased incidence of type II diabetes Required practical 11: Production of a dilution series of a glucose solution and use of colorimetric techniques to produce a calibration curve with which to identify the concentration of glucose in an unknown 'urine' sample 3.6.4.3 Control of blood water potential Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in:		Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in:		
6.4.3 Control of blood water potential Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: • the formation of glomerular filtrate	the increased incidence of type II diabetes Required practical 11: Production of a dilution series of a glucose solution and use of colorimetric techniques to produce a calibration curve with which to identify the concentration of glucose in an unknown 'urine' sample 3.6.4.3 Control of blood water potential Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: • the formation of glomerular filtrate		Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: • the formation of glomerular filtrate		
6.4.3 Control of blood water potential Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: • the formation of glomerular filtrate • reabsorption of glucose and water by the proximal convoluted tubule	the increased incidence of type II diabetes Required practical 11: Production of a dilution series of a glucose solution and use of colorimetric techniques to produce a calibration curve with which to identify the concentration of glucose in an unknown 'urine' sample 3.6.4.3 Control of blood water potential Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: • the formation of glomerular filtrate • reabsorption of glucose and water by the proximal convoluted tubule		Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: • the formation of glomerular filtrate • reabsorption of glucose and water by the proximal convoluted tubule		
6.4.3 Control of blood water potential Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: • the formation of glomerular filtrate • reabsorption of glucose and water by the proximal convoluted tubule • maintaining a gradient of sodium ions in the medulla by the loop of	the increased incidence of type II diabetes Required practical 11: Production of a dilution series of a glucose solution and use of colorimetric techniques to produce a calibration curve with which to identify the concentration of glucose in an unknown 'urine' sample 3.6.4.3 Control of blood water potential Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: • the formation of glomerular filtrate • reabsorption of glucose and water by the proximal convoluted tubule • maintaining a gradient of sodium ions in the medulla by the loop of		Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: • the formation of glomerular filtrate • reabsorption of glucose and water by the proximal convoluted tubule • maintaining a gradient of sodium ions in the medulla by the loop of		
6.4.3 Control of blood water potential Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: • the formation of glomerular filtrate • reabsorption of glucose and water by the proximal convoluted tubule • maintaining a gradient of sodium ions in the medulla by the loop of Henle	Required practical 11: Production of a dilution series of a glucose solution and use of colorimetric techniques to produce a calibration curve with which to identify the concentration of glucose in an unknown 'urine' sample 3.6.4.3 Control of blood water potential Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: • the formation of glomerular filtrate • reabsorption of glucose and water by the proximal convoluted tubule • maintaining a gradient of sodium ions in the medulla by the loop of Henle		Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: the formation of glomerular filtrate reabsorption of glucose and water by the proximal convoluted tubule maintaining a gradient of sodium ions in the medulla by the loop of Henle		
6.4.3 Control of blood water potential Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: • the formation of glomerular filtrate • reabsorption of glucose and water by the proximal convoluted tubule • maintaining a gradient of sodium ions in the medulla by the loop of Henle • reabsorption of water by the distal convoluted tubule and collecting	the increased incidence of type II diabetes Required practical 11: Production of a dilution series of a glucose solution and use of colorimetric techniques to produce a calibration curve with which to identify the concentration of glucose in an unknown 'urine' sample 3.6.4.3 Control of blood water potential Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: • the formation of glomerular filtrate • reabsorption of glucose and water by the proximal convoluted tubule • maintaining a gradient of sodium ions in the medulla by the loop of Henle • reabsorption of water by the distal convoluted tubule and collecting		Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: • the formation of glomerular filtrate • reabsorption of glucose and water by the proximal convoluted tubule • maintaining a gradient of sodium ions in the medulla by the loop of Henle • reabsorption of water by the distal convoluted tubule and collecting		
6.4.3 Control of blood water potential Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: • the formation of glomerular filtrate • reabsorption of glucose and water by the proximal convoluted tubule • maintaining a gradient of sodium ions in the medulla by the loop of Henle • reabsorption of water by the distal convoluted tubule and collecting ducts	the increased incidence of type II diabetes Required practical 11: Production of a dilution series of a glucose solution and use of colorimetric techniques to produce a calibration curve with which to identify the concentration of glucose in an unknown 'urine' sample 3.6.4.3 Control of blood water potential Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: • the formation of glomerular filtrate • reabsorption of glucose and water by the proximal convoluted tubule • maintaining a gradient of sodium ions in the medulla by the loop of Henle • reabsorption of water by the distal convoluted tubule and collecting ducts	3.6	Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: • the formation of glomerular filtrate • reabsorption of glucose and water by the proximal convoluted tubule • maintaining a gradient of sodium ions in the medulla by the loop of Henle • reabsorption of water by the distal convoluted tubule and collecting ducts		
6.4.3 Control of blood water potential Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: • the formation of glomerular filtrate • reabsorption of glucose and water by the proximal convoluted tubule • maintaining a gradient of sodium ions in the medulla by the loop of Henle • reabsorption of water by the distal convoluted tubule and collecting ducts	the increased incidence of type II diabetes Required practical 11: Production of a dilution series of a glucose solution and use of colorimetric techniques to produce a calibration curve with which to identify the concentration of glucose in an unknown 'urine' sample 3.6.4.3 Control of blood water potential Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: • the formation of glomerular filtrate • reabsorption of glucose and water by the proximal convoluted tubule • maintaining a gradient of sodium ions in the medulla by the loop of Henle • reabsorption of water by the distal convoluted tubule and collecting	3.6	Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: • the formation of glomerular filtrate • reabsorption of glucose and water by the proximal convoluted tubule • maintaining a gradient of sodium ions in the medulla by the loop of Henle • reabsorption of water by the distal convoluted tubule and collecting ducts		
6.4.3 Control of blood water potential Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: • the formation of glomerular filtrate • reabsorption of glucose and water by the proximal convoluted tubule • maintaining a gradient of sodium ions in the medulla by the loop of Henle • reabsorption of water by the distal convoluted tubule and collecting ducts	the increased incidence of type II diabetes Required practical 11: Production of a dilution series of a glucose solution and use of colorimetric techniques to produce a calibration curve with which to identify the concentration of glucose in an unknown 'urine' sample 3.6.4.3 Control of blood water potential Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: • the formation of glomerular filtrate • reabsorption of glucose and water by the proximal convoluted tubule • maintaining a gradient of sodium ions in the medulla by the loop of Henle • reabsorption of water by the distal convoluted tubule and collecting ducts	3.6	Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: • the formation of glomerular filtrate • reabsorption of glucose and water by the proximal convoluted tubule • maintaining a gradient of sodium ions in the medulla by the loop of Henle • reabsorption of water by the distal convoluted tubule and collecting ducts		
6.4.3 Control of blood water potential Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: • the formation of glomerular filtrate • reabsorption of glucose and water by the proximal convoluted tubule • maintaining a gradient of sodium ions in the medulla by the loop of Henle • reabsorption of water by the distal convoluted tubule and collecting ducts	the increased incidence of type II diabetes Required practical 11: Production of a dilution series of a glucose solution and use of colorimetric techniques to produce a calibration curve with which to identify the concentration of glucose in an unknown 'urine' sample 3.6.4.3 Control of blood water potential Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: • the formation of glomerular filtrate • reabsorption of glucose and water by the proximal convoluted tubule • maintaining a gradient of sodium ions in the medulla by the loop of Henle • reabsorption of water by the distal convoluted tubule and collecting ducts	3.6	Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: • the formation of glomerular filtrate • reabsorption of glucose and water by the proximal convoluted tubule • maintaining a gradient of sodium ions in the medulla by the loop of Henle • reabsorption of water by the distal convoluted tubule and collecting ducts		
6.4.3 Control of blood water potential Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: • the formation of glomerular filtrate • reabsorption of glucose and water by the proximal convoluted tubule • maintaining a gradient of sodium ions in the medulla by the loop of Henle • reabsorption of water by the distal convoluted tubule and collecting ducts	the increased incidence of type II diabetes Required practical 11: Production of a dilution series of a glucose solution and use of colorimetric techniques to produce a calibration curve with which to identify the concentration of glucose in an unknown 'urine' sample 3.6.4.3 Control of blood water potential Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: • the formation of glomerular filtrate • reabsorption of glucose and water by the proximal convoluted tubule • maintaining a gradient of sodium ions in the medulla by the loop of Henle • reabsorption of water by the distal convoluted tubule and collecting ducts	3.6	Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: • the formation of glomerular filtrate • reabsorption of glucose and water by the proximal convoluted tubule • maintaining a gradient of sodium ions in the medulla by the loop of Henle • reabsorption of water by the distal convoluted tubule and collecting ducts		
6.4.3 Control of blood water potential Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: • the formation of glomerular filtrate • reabsorption of glucose and water by the proximal convoluted tubule • maintaining a gradient of sodium ions in the medulla by the loop of Henle • reabsorption of water by the distal convoluted tubule and collecting ducts	the increased incidence of type II diabetes Required practical 11: Production of a dilution series of a glucose solution and use of colorimetric techniques to produce a calibration curve with which to identify the concentration of glucose in an unknown 'urine' sample 3.6.4.3 Control of blood water potential Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: • the formation of glomerular filtrate • reabsorption of glucose and water by the proximal convoluted tubule • maintaining a gradient of sodium ions in the medulla by the loop of Henle • reabsorption of water by the distal convoluted tubule and collecting ducts	3.6	Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: • the formation of glomerular filtrate • reabsorption of glucose and water by the proximal convoluted tubule • maintaining a gradient of sodium ions in the medulla by the loop of Henle • reabsorption of water by the distal convoluted tubule and collecting ducts		
6.4.3 Control of blood water potential Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: • the formation of glomerular filtrate • reabsorption of glucose and water by the proximal convoluted tubule • maintaining a gradient of sodium ions in the medulla by the loop of Henle • reabsorption of water by the distal convoluted tubule and collecting ducts	the increased incidence of type II diabetes Required practical 11: Production of a dilution series of a glucose solution and use of colorimetric techniques to produce a calibration curve with which to identify the concentration of glucose in an unknown 'urine' sample 3.6.4.3 Control of blood water potential Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: • the formation of glomerular filtrate • reabsorption of glucose and water by the proximal convoluted tubule • maintaining a gradient of sodium ions in the medulla by the loop of Henle • reabsorption of water by the distal convoluted tubule and collecting ducts	3.6	Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: • the formation of glomerular filtrate • reabsorption of glucose and water by the proximal convoluted tubule • maintaining a gradient of sodium ions in the medulla by the loop of Henle • reabsorption of water by the distal convoluted tubule and collecting ducts		
6.4.3 Control of blood water potential Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: • the formation of glomerular filtrate • reabsorption of glucose and water by the proximal convoluted tubule • maintaining a gradient of sodium ions in the medulla by the loop of Henle • reabsorption of water by the distal convoluted tubule and collecting ducts	the increased incidence of type II diabetes Required practical 11: Production of a dilution series of a glucose solution and use of colorimetric techniques to produce a calibration curve with which to identify the concentration of glucose in an unknown 'urine' sample 3.6.4.3 Control of blood water potential Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: • the formation of glomerular filtrate • reabsorption of glucose and water by the proximal convoluted tubule • maintaining a gradient of sodium ions in the medulla by the loop of Henle • reabsorption of water by the distal convoluted tubule and collecting ducts	3.6	Osmoregulation as control of the water potential of the blood. The roles of the hypothalamus, posterior pituitary and antidiuretic hormone (ADH) in osmoregulation. The structure of the nephron and its role in: • the formation of glomerular filtrate • reabsorption of glucose and water by the proximal convoluted tubule • maintaining a gradient of sodium ions in the medulla by the loop of Henle • reabsorption of water by the distal convoluted tubule and collecting ducts		
	the increased incidence of type II diabetes Required practical 11: Production of a dilution series of a glucose solution and use of colorimetric techniques to produce a calibration curve with which to identify the concentration of glucose in an unknown 'urine' sample		.4.3 Control of blood water potential		
·			The causes of types I and II diabetes and their control by insulin and/or		
manipulation of the diet.	The causes of types I and II diabetes and their control by insulin and/or				
The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet.					
adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet.	adenylate cyclase, cyclic AMP (cAMP) and protein kinase.				
adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet.	adenylate cyclase, cyclic AMP (cAMP) and protein kinase.				
The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet.	The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase.		 activating enzymes involved in the conversion of glycogen to glucose 		
The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet.	The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase.				
 activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet. 	activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase.		•		
 attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet. 	 attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. 				
 attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet. 	 attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. 		acids into glucose		
The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet.	The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase.		 activating enzymes involved in the conversion of glycerol and amino 		
acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet.	acids into glucose The role of adrenaline by: • attaching to receptors on the surfaces of target cells • activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase.		 activating enzymes involved in the conversion of glycogen to glucose 		
 activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet. 	 activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. 				
 activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet. 	 activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. 				
 attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet. 	 attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. 				
The action of glucagon by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet.	The action of glucagon by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase.				
 activating enzymes involved in the conversion of glucose to glycogen The action of glucagon by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet. 	 activating enzymes involved in the conversion of glucose to glycogen The action of glucagon by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. 				
 activating enzymes involved in the conversion of glucose to glycogen The action of glucagon by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet. 	 activating enzymes involved in the conversion of glucose to glycogen The action of glucagon by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. 		 controlling the uptake of glucose by regulating the inclusion of channel 		
proteins in the surface membranes of target cells	proteins in the surface membranes of target cells activating enzymes involved in the conversion of glucose to glycogen The action of glucagon by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase.				
 controlling the uptake of glucose by regulating the inclusion of channel proteins in the surface membranes of target cells activating enzymes involved in the conversion of glucose to glycogen The action of glucagon by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet. 	 controlling the uptake of glucose by regulating the inclusion of channel proteins in the surface membranes of target cells activating enzymes involved in the conversion of glucose to glycogen The action of glucagon by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. 		 attaching to receptors on the surfaces of target cells 		
 controlling the uptake of glucose by regulating the inclusion of channel proteins in the surface membranes of target cells activating enzymes involved in the conversion of glucose to glycogen The action of glucagon by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet. 	 controlling the uptake of glucose by regulating the inclusion of channel proteins in the surface membranes of target cells activating enzymes involved in the conversion of glucose to glycogen The action of glucagon by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. 		The action of insulin by:		
 attaching to receptors on the surfaces of target cells controlling the uptake of glucose by regulating the inclusion of channel proteins in the surface membranes of target cells activating enzymes involved in the conversion of glucose to glycogen The action of glucagon by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet. 	 attaching to receptors on the surfaces of target cells controlling the uptake of glucose by regulating the inclusion of channel proteins in the surface membranes of target cells activating enzymes involved in the conversion of glucose to glycogen The action of glucagon by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. 		The role of the liver in glycogenesis, glycogenolysis and gluconeogenesis.		
The action of insulin by: attaching to receptors on the surfaces of target cells controlling the uptake of glucose by regulating the inclusion of channel proteins in the surface membranes of target cells activating enzymes involved in the conversion of glucose to glycogen The action of glucagon by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet.	The action of insulin by: attaching to receptors on the surfaces of target cells controlling the uptake of glucose by regulating the inclusion of channel proteins in the surface membranes of target cells activating enzymes involved in the conversion of glucose to glycogen The action of glucagon by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase.		The factors that influence blood glucose concentration.		
The role of the liver in glycogenesis, glycogenolysis and gluconeogenesis. The action of insulin by: attaching to receptors on the surfaces of target cells controlling the uptake of glucose by regulating the inclusion of channel proteins in the surface membranes of target cells activating enzymes involved in the conversion of glucose to glycogen The action of glucagon by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet.	The role of the liver in glycogenesis, glycogenolysis and gluconeogenesis. The action of insulin by: attaching to receptors on the surfaces of target cells controlling the uptake of glucose by regulating the inclusion of channel proteins in the surface membranes of target cells activating enzymes involved in the conversion of glucose to glycogen The action of glucagon by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase.	3.6	.4.2 Control of blood glucose concentration		
The factors that influence blood glucose concentration. The role of the liver in glycogenesis, glycogenolysis and gluconeogenesis. The action of insulin by: • attaching to receptors on the surfaces of target cells • controlling the uptake of glucose by regulating the inclusion of channel proteins in the surface membranes of target cells • activating enzymes involved in the conversion of glucose to glycogen The action of glucagon by: • attaching to receptors on the surfaces of target cells • activating enzymes involved in the conversion of glycogen to glucose • activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: • attaching to receptors on the surfaces of target cells • activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet.	The factors that influence blood glucose concentration. The role of the liver in glycogenesis, glycogenolysis and gluconeogenesis. The action of insulin by: • attaching to receptors on the surfaces of target cells • controlling the uptake of glucose by regulating the inclusion of channel proteins in the surface membranes of target cells • activating enzymes involved in the conversion of glucose to glycogen The action of glucagon by: • attaching to receptors on the surfaces of target cells • activating enzymes involved in the conversion of glycogen to glucose • activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: • attaching to receptors on the surfaces of target cells • activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase.		feedback.	able to	
The factors that influence blood glucose concentration The role of the liver in glycogenesis, glycogenolysis and gluconeogenesis. The action of insulin by: attaching to receptors on the surfaces of target cells controlling the uptake of glucose by regulating the inclusion of channel proteins in the surface membranes of target cells activating enzymes involved in the conversion of glucose to glycogen The action of glucagon by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The role of adrenaline by: attaching to receptors on the surfaces of target cells activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet.	3.6.4.2 Control of blood glucose concentration The factors that influence blood glucose concentration. The role of the liver in glycogenesis, glycogenolysis and gluconeogenesis. The action of insulin by: • attaching to receptors on the surfaces of target cells • controlling the uptake of glucose by regulating the inclusion of channel proteins in the surface membranes of target cells • activating enzymes involved in the conversion of glucose to glycogen The action of glucagon by: • attaching to receptors on the surfaces of target cells • activating enzymes involved in the conversion of glycogen to glucose • activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: • attaching to receptors on the surfaces of target cells • activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase.		Interpret information relating to examples of negative and positive	Students should be	
feedback. 6.4.2 Control of blood glucose concentration The factors that influence blood glucose concentration. The role of the liver in glycogenesis, glycogenolysis and gluconeogenesis. The action of insulin by: • attaching to receptors on the surfaces of target cells • controlling the uptake of glucose by regulating the inclusion of channel proteins in the surface membranes of target cells • activating enzymes involved in the conversion of glucose to glycogen The action of glucagon by: • attaching to receptors on the surfaces of target cells • activating enzymes involved in the conversion of glycogen to glucose • activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: • attaching to receptors on the surfaces of target cells • activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase. The causes of types I and II diabetes and their control by insulin and/or manipulation of the diet.	### seedback. 3.6.4.2 Control of blood glucose concentration The factors that influence blood glucose concentration. The role of the liver in glycogenesis, glycogenolysis and gluconeogenesis. The action of insulin by: • attaching to receptors on the surfaces of target cells • controlling the uptake of glucose by regulating the inclusion of channel proteins in the surface membranes of target cells • activating enzymes involved in the conversion of glucose to glycogen The action of glucagon by: • attaching to receptors on the surfaces of target cells • activating enzymes involved in the conversion of glycogen to glucose • activating enzymes involved in the conversion of glycerol and amino acids into glucose The role of adrenaline by: • attaching to receptors on the surfaces of target cells • activating enzymes involved in the conversion of glycogen to glucose The second messenger model of adrenaline and glucagon action, involving adenylate cyclase, cyclic AMP (cAMP) and protein kinase.		greater degree of control.		

3.7 Genetics, populations, evolution and ecosystems

- The theory of evolution underpins modern Biology. All new species arise from an existing species. This results in different species sharing a common ancestry, as represented in phylogenetic classification. Common ancestry can explain the similarities between all living organisms, such as common chemistry (eg all proteins made from the same 20 or so amino acids), physiological pathways (eg anaerobic respiration), cell structure, DNA as the genetic material and a 'universal' genetic code.
- The individuals of a species share the same genes but (usually) different combinations of alleles of these genes. An individual inherits alleles from their parent or parents.
- A species exists as one or more populations. There is variation in the
 phenotypes of organisms in a population, due to genetic and
 environmental factors. Two forces affect genetic variation in
 populations: genetic drift and natural selection. Genetic drift can cause
 changes in allele frequency in small populations. Natural selection
 occurs when alleles that enhance the fitness of the individuals that carry
 them rise in frequency. A change in the allele frequency of a population
 is evolution.
- If a population becomes isolated from other populations of the same species, there will be no gene flow between the isolated population and the others. This may lead to the accumulation of genetic differences in the isolated population, compared with the other populations. These differences may ultimately lead to organisms in the isolated population becoming unable to breed and produce fertile offspring with organisms from the other populations. This reproductive isolation means that a new species has evolved.
- Populations of different species live in communities. Competition occurs
 within and between these populations for the means of survival. Within
 a single community, one population is affected by other populations,
 the biotic factors, in its environment. Populations within communities
 are also affected by, and in turn affect, the abiotic (physicochemical)
 factors in an ecosystem.

3.7.1 Inheritance

The genotype is the genetic constitution of an organism.	
The phenotype is the expression of this genetic constitution and its	
interaction with the environment.	
There may be many alleles of a single gene.	
Alleles may be dominant, recessive or codominant.	
In a diploid organism, the alleles at a specific locus may be either	
homozygous or heterozygous.	
The use of fully labelled genetic diagrams to interpret, or predict, the results	
of:	
 monohybrid and dihybrid crosses involving dominant, recessive and 	
codominant alleles	
 crosses involving sex-linkage, autosomal linkage, multiple alleles and 	
enistasis	

Use of the chi-squared () test to compare the goodness of fit of observed	
phenotypic ratios with expected ratios 3.7.2 Populations	
	1
Species exist as one or more populations. A population as a group of organisms of the same species occupying a	
particular space at a particular time that can potentially interbreed.	
The concepts of gene pool and allele frequency.	
The Hardy–Weinberg principle provides a mathematical model, which	
predicts that allele frequencies will not change from generation to	
generation. The conditions under which the principle applies.	
The frequency of alleles, genotypes and phenotypes in a population can be	
calculated using the Hardy–Weinberg equation:	
where is the frequency of one (usually the dominant) allele and is	
the frequency of the other (usually recessive) allele of the gene.	
3.7.3 Evolution may lead to speciation	
Individuals within a population of a species may show a wide range of	
variation in phenotype. This is due to genetic and environmental factors.	
The primary source of genetic variation is mutation. Meiosis and the	
random fertilisation of gametes during sexual reproduction produce further	
genetic variation.	
Predation, disease and competition for the means of survival result in	
differential survival and reproduction, ie natural selection.	
Those organisms with phenotypes providing selective advantages are likely	
to produce more offspring and pass on their favourable alleles to the next	
generation. The effect of this differential reproductive success on the allele	
frequencies within a gene pool.	
The effects of stabilising, directional and disruptive selection.	
Evolution as a change in the allele frequencies in a population.	
Reproductive separation of two populations can result in the accumulation	
of difference in their gene pools. New species arise when these genetic	
differences lead to an inability of members of the populations to interbreed	
·	
and produce fertile offspring. In this way, new species arise from existing	
species. Allopatric and sympatric speciation	
Allopatric and sympatric speciation.	
The importance of genetic drift in causing changes in allele frequency in small populations.	
explain why individuals within a population of a species may show a	Students should be
wide range of variation in phenotype	able to
 explain why genetic drift is important only in small populations 	
 explain how natural selection and isolation may result in change in the 	
allele and phenotype frequency and lead to the formation of a new	
species	
 explain how evolutionary change over a long period of time has resulted 	
in a great diversity of species	
3.7.4 Populations in ecosystems	
Populations of different species form a community. A community and the	
non-living components of its environment together form an ecosystem.	
Ecosystems can range in size from the very small to the very large.	

	change the environment so that it becomes more suitable for other species with different adaptations. The new species may change the environment in such a way that it becomes less suitable for the previous species. Changes that organisms produce in their abiotic environment can result in a	
	less hostile environment and change biodiversity. Conservation of habitats frequently involves management of succession.	
	 show understanding of the need to manage the conflict between human needs and conservation in order to maintain the sustainability of natural resources evaluate evidence and data concerning issues relating to the conservation of species and habitats and consider conflicting evidence use given data to calculate the size of a population estimated using the 	Students should be able to
PRACTICAL	mark-release-recapture method Required practical 12: Investigation into the effect of a named environmental factor on the distribution of a given species	PRACTICAL

3.8 The Control of Gene expression Cells are able to control their metabolic activities by regulating the transcription and translation of their genome. Although the cells within an organism carry the same coded genetic information, they translate only part of it. In multicellular organisms, this control of translation enables cells to have specialised functions, forming tissues and organs. There are many factors that control the expression of genes and, thus, the phenotype of organisms. Some are external, environmental factors, others are internal factors. The expression of genes is not as simple as once thought, with epigenetic regulation of transcription being increasingly recognised as important. Humans are learning how to control the expression of genes by altering the epigenome, and how to alter genomes and proteomes of organisms. This has many medical and technological applications. Consideration of cellular control mechanisms underpins the content of this section. Students who have studied it should develop an understanding of the ways in which organisms and cells control their activities. This should lead to an appreciation of common ailments resulting from a breakdown of these control mechanisms and the use of DNA technology in the diagnosis and treatment of human diseases. 3.8.1 Alteration of the sequence of bases in DNA can alter the structure of proteins Gene mutations might arise during DNA replication. These include: addition deletion substitution inversion duplication translocation of bases Gene mutations occur spontaneously. The mutation rate is increased by mutagenic agents. Mutations can result in a different amino acid sequence in the encoded polypeptide. Some gene mutations change only one triplet code. Due to the degenerate nature of the genetic code, not all such mutations result in a change to the encoded amino acid. Some gene mutations change the nature of all base triplets downstream from the mutation, ie result in a frame shift. Relate the nature of a gene mutation to its effect on the encoded Students should be polypeptide. able to ... 3.8.2 Gene expression is controlled by a number of features 3.8.2.1 Most of a cell's DNA is not translated Totipotent cells can divide and produce any type of body cell. During development, totipotent cells translate only part of their DNA, resulting in cell specialisation. Totipotent cells occur only for a limited time in early mammalian embryos. Pluripotent cells are found in embryos; multipotent and unipotent cells are found in mature mammals and can divide to form a limited number of different cell types. Pluripotent stem cells can divide in unlimited numbers and can be used in treating human disorders.

Uning tent calls aromalified by the formation of cardiamy as the	
Unipotent cells, exemplified by the formation of cardiomyocytes.	
Induced pluripotent stem cells (iPS cells) can be produced from adult	
somatic cells using appropriate protein transcription factors.	
Evaluate the use of stem cells.	Students should be
	able to
3.8.2.2 Regulation of transcription and translation	
In eukaryotes, transcription of target genes can be stimulated or inhibited	
when specific transcriptional factors move from the cytoplasm into the	
nucleus. The role of the steroid hormone, oestrogen, in initiating	
transcription.	
Epigenetic control of gene expression in eukaryotes.	
Epigenetics involves heritable changes in gene function, without changes to	0
the base sequence of DNA. These changes are caused by changes in the	
environment that inhibit transcription by:	
increased methylation of the DNA or	
decreased acetylation of associated histones.	
The relevance of epigenetics on the development and treatment of disease	٠, ر
especially cancer.	
In eukaryotes and some prokaryotes, translation of the mRNA produced	
from target genes can be inhibited by RNA interference (RNAi).	
interpret data provided from investigations into gene expression	Students should be
evaluate appropriate data for the relative influences of genetic and	able to
environmental factors on phenotype	
3.8.2.3 Gene expression and cancer	
The main characteristics of benign and malignant tumours.	
The role of the following in the development of tumours:	
 tumour suppressor genes and oncogenes 	
 abnormal methylation of tumour suppressor genes and oncogenes 	
 increased oestrogen concentrations in the development of some breast 	t
cancers	
evaluate evidence showing correlations between genetic and	Students should be
environmental factors and various forms of cancer	able to
• interpret information relating to the way in which an understanding of	
the roles of oncogenes and tumour suppressor genes could be used in	
the prevention, treatment and cure of cancer	
3.8.3 Using genome projects	
Sequencing projects have read the genomes of a wide range of organisms,	
including humans.	
Determining the genome of simpler organisms allows the sequences of the	:
proteins that derive from the genetic code (the proteome) of the organism	
to be determined. This may have many applications, including the	
identification of potential antigens for use in vaccine production.	
In more complex organisms, the presence of non-coding DNA and of	
regulatory genes means that knowledge of the genome cannot easily be	
translated into the proteome.	
Sequencing methods are continuously updated and have become	
automated.	
	ving a better understanding
3.8.4 Gene technologies allow the study and alteration of gene function allow	
3.8.4 Gene technologies allow the study and alteration of gene function allow of organism function and the design of new industrial and medical processes	
of organism function and the design of new industrial and medical processes	

1		
	from one organism, or species, to another. Since the genetic code is	
	universal, as are transcription and translation mechanisms, the transferred	
	DNA can be translated within cells of the recipient (transgenic) organism.	
	Fragments of DNA can be produced by several methods, including:	
	 conversion of mRNA to complementary DNA (cDNA), using reverse 	
	transcriptase	
	• using restriction enzymes to cut a fragment containing the desired gene	
	from DNA	
	 creating the gene in a 'gene machine' 	
	Fragments of DNA can be amplified by in vitro and in vivo techniques.	
	The principles of the polymerase chain reaction (PCR) as an in vitro method	
	to amplify DNA fragments.	
	The culture of transformed host cells as an in vivo method to amplify DNA	
	fragments.	
	The addition of promoter and terminator regions to the fragments of DNA.	
	The use of restriction endonucleases and ligases to insert fragments of DNA	
	into vectors. Transformation of host cells using these vectors.	
	The use of marker genes to detect genetically modified (GM) cells or	
	organisms.	
	• interpret information relating to the use of recombinant DNA technology	Students should be
	 evaluate the ethical, financial and social issues associated with the use 	able to
	and ownership of recombinant DNA technology in agriculture, in	dore to
	industry and in medicine	
	•	
	balance the humanitarian aspects of recombinant DNA technology with the apposition from anyisapmentalists and anti-globalisation activists.	
	the opposition from environmentalists and anti-globalisation activists	
2.0	relate recombinant DNA technology to gene therapy A 2 Differences in DNA between individuals of the same angles can be explain.	ited for identification
	.4.2 Differences in DNA between individuals of the same species can be explo d diagnosis of heritable conditions	onted for identification
and	The use of labelled DNA probes and DNA hybridisation to locate specific	
	THE USE OF IQUELIEU DIVA DIODES AND DIVA HVOLIDISATION TO TOLATE SUECING	
	·	
	alleles of genes.	
1 1	alleles of genes. The use of labelled DNA probes that can be used to screen patients for	
	alleles of genes. The use of labelled DNA probes that can be used to screen patients for heritable conditions, drug responses or health risks.	
	alleles of genes. The use of labelled DNA probes that can be used to screen patients for heritable conditions, drug responses or health risks. The use of this information in genetic counselling and personalised	
	alleles of genes. The use of labelled DNA probes that can be used to screen patients for heritable conditions, drug responses or health risks. The use of this information in genetic counselling and personalised medicine.	Students should be
	alleles of genes. The use of labelled DNA probes that can be used to screen patients for heritable conditions, drug responses or health risks. The use of this information in genetic counselling and personalised medicine. Evaluate information relating to screening individuals for genetically	Students should be
2.0	alleles of genes. The use of labelled DNA probes that can be used to screen patients for heritable conditions, drug responses or health risks. The use of this information in genetic counselling and personalised medicine. Evaluate information relating to screening individuals for genetically determined conditions and drug responses.	Students should be able to
3.8	alleles of genes. The use of labelled DNA probes that can be used to screen patients for heritable conditions, drug responses or health risks. The use of this information in genetic counselling and personalised medicine. Evaluate information relating to screening individuals for genetically determined conditions and drug responses. 4.4.3 Genetic fingerprinting	
3.8	alleles of genes. The use of labelled DNA probes that can be used to screen patients for heritable conditions, drug responses or health risks. The use of this information in genetic counselling and personalised medicine. Evaluate information relating to screening individuals for genetically determined conditions and drug responses. 4.3 Genetic fingerprinting An organism's genome contains many variable number tandem repeats	
3.8	The use of labelled DNA probes that can be used to screen patients for heritable conditions, drug responses or health risks. The use of this information in genetic counselling and personalised medicine. Evaluate information relating to screening individuals for genetically determined conditions and drug responses. 4.3 Genetic fingerprinting An organism's genome contains many variable number tandem repeats (VNTRs). The probability of two individuals having the same VNTRs is very	
3.8	alleles of genes. The use of labelled DNA probes that can be used to screen patients for heritable conditions, drug responses or health risks. The use of this information in genetic counselling and personalised medicine. Evaluate information relating to screening individuals for genetically determined conditions and drug responses. 4.3 Genetic fingerprinting An organism's genome contains many variable number tandem repeats (VNTRs). The probability of two individuals having the same VNTRs is very low.	
3.8	The use of labelled DNA probes that can be used to screen patients for heritable conditions, drug responses or health risks. The use of this information in genetic counselling and personalised medicine. Evaluate information relating to screening individuals for genetically determined conditions and drug responses. 4.3 Genetic fingerprinting An organism's genome contains many variable number tandem repeats (VNTRs). The probability of two individuals having the same VNTRs is very low. The technique of genetic fingerprinting in analysing DNA fragments that	
3.8	The use of labelled DNA probes that can be used to screen patients for heritable conditions, drug responses or health risks. The use of this information in genetic counselling and personalised medicine. Evaluate information relating to screening individuals for genetically determined conditions and drug responses. 4.3 Genetic fingerprinting An organism's genome contains many variable number tandem repeats (VNTRs). The probability of two individuals having the same VNTRs is very low. The technique of genetic fingerprinting in analysing DNA fragments that have been cloned by PCR, and its use in determining genetic relationships	
3.8	The use of labelled DNA probes that can be used to screen patients for heritable conditions, drug responses or health risks. The use of this information in genetic counselling and personalised medicine. Evaluate information relating to screening individuals for genetically determined conditions and drug responses. 4.3 Genetic fingerprinting An organism's genome contains many variable number tandem repeats (VNTRs). The probability of two individuals having the same VNTRs is very low. The technique of genetic fingerprinting in analysing DNA fragments that have been cloned by PCR, and its use in determining genetic relationships and in determining the genetic variability within a population.	
3.8	The use of labelled DNA probes that can be used to screen patients for heritable conditions, drug responses or health risks. The use of this information in genetic counselling and personalised medicine. Evaluate information relating to screening individuals for genetically determined conditions and drug responses. 4.3 Genetic fingerprinting An organism's genome contains many variable number tandem repeats (VNTRs). The probability of two individuals having the same VNTRs is very low. The technique of genetic fingerprinting in analysing DNA fragments that have been cloned by PCR, and its use in determining genetic relationships and in determining the genetic variability within a population. The use of genetic fingerprinting in the fields of forensic science, medical	
3.8	The use of labelled DNA probes that can be used to screen patients for heritable conditions, drug responses or health risks. The use of this information in genetic counselling and personalised medicine. Evaluate information relating to screening individuals for genetically determined conditions and drug responses. 4.3 Genetic fingerprinting An organism's genome contains many variable number tandem repeats (VNTRs). The probability of two individuals having the same VNTRs is very low. The technique of genetic fingerprinting in analysing DNA fragments that have been cloned by PCR, and its use in determining genetic relationships and in determining the genetic variability within a population. The use of genetic fingerprinting in the fields of forensic science, medical diagnosis, animal and plant breeding.	able to
3.8	The use of labelled DNA probes that can be used to screen patients for heritable conditions, drug responses or health risks. The use of this information in genetic counselling and personalised medicine. Evaluate information relating to screening individuals for genetically determined conditions and drug responses. 4.3 Genetic fingerprinting An organism's genome contains many variable number tandem repeats (VNTRs). The probability of two individuals having the same VNTRs is very low. The technique of genetic fingerprinting in analysing DNA fragments that have been cloned by PCR, and its use in determining genetic relationships and in determining the genetic variability within a population. The use of genetic fingerprinting in the fields of forensic science, medical	Students should be
3.8	The use of labelled DNA probes that can be used to screen patients for heritable conditions, drug responses or health risks. The use of this information in genetic counselling and personalised medicine. Evaluate information relating to screening individuals for genetically determined conditions and drug responses. 4.3 Genetic fingerprinting An organism's genome contains many variable number tandem repeats (VNTRs). The probability of two individuals having the same VNTRs is very low. The technique of genetic fingerprinting in analysing DNA fragments that have been cloned by PCR, and its use in determining genetic relationships and in determining the genetic variability within a population. The use of genetic fingerprinting in the fields of forensic science, medical diagnosis, animal and plant breeding.	able to
3.8	alleles of genes. The use of labelled DNA probes that can be used to screen patients for heritable conditions, drug responses or health risks. The use of this information in genetic counselling and personalised medicine. Evaluate information relating to screening individuals for genetically determined conditions and drug responses. 4.3 Genetic fingerprinting An organism's genome contains many variable number tandem repeats (VNTRs). The probability of two individuals having the same VNTRs is very low. The technique of genetic fingerprinting in analysing DNA fragments that have been cloned by PCR, and its use in determining genetic relationships and in determining the genetic variability within a population. The use of genetic fingerprinting in the fields of forensic science, medical diagnosis, animal and plant breeding. • explain the biological principles that underpin genetic fingerprinting	Students should be
3.8	alleles of genes. The use of labelled DNA probes that can be used to screen patients for heritable conditions, drug responses or health risks. The use of this information in genetic counselling and personalised medicine. Evaluate information relating to screening individuals for genetically determined conditions and drug responses. 4.3 Genetic fingerprinting An organism's genome contains many variable number tandem repeats (VNTRs). The probability of two individuals having the same VNTRs is very low. The technique of genetic fingerprinting in analysing DNA fragments that have been cloned by PCR, and its use in determining genetic relationships and in determining the genetic variability within a population. The use of genetic fingerprinting in the fields of forensic science, medical diagnosis, animal and plant breeding. • explain the biological principles that underpin genetic fingerprinting techniques	Students should be
3.8	alleles of genes. The use of labelled DNA probes that can be used to screen patients for heritable conditions, drug responses or health risks. The use of this information in genetic counselling and personalised medicine. Evaluate information relating to screening individuals for genetically determined conditions and drug responses. 4.3 Genetic fingerprinting An organism's genome contains many variable number tandem repeats (VNTRs). The probability of two individuals having the same VNTRs is very low. The technique of genetic fingerprinting in analysing DNA fragments that have been cloned by PCR, and its use in determining genetic relationships and in determining the genetic variability within a population. The use of genetic fingerprinting in the fields of forensic science, medical diagnosis, animal and plant breeding. • explain the biological principles that underpin genetic fingerprinting techniques • interpret data showing the results of gel electrophoresis to separate	Students should be

Extension notes:	
extension notes.	